liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transfinite large inductive dimensions modulo absolute Borel classes
Linköping University, Department of Mathematics. Linköping University, The Institute of Technology.
Shimane University.
2009 (English)In: JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, ISSN 0025-5645 , Vol. 61, no 2, p. 327-344Article in journal (Refereed) Published
Abstract [en]

The following inequalities between transfinite large inductive dimensions modulo absolutely additive (resp. multiplicative) Borel classes A(alpha) (resp. M(alpha)) hold in separable metrizable spaces:

(i) A(0)-trInd >= M(0)-trInd >= max{A(1)-trInd, M(1)-trInd}, and

(ii) min{A(alpha)-trInd, M(alpha)-trInd} >= max{A(beta)-trInd, M(beta)-trInd}, where 1 <= alpha < beta < omega(1).

We show that for any two functions a and m from the set of ordinals Omega = {alpha : alpha < omega(1)} to the set {-1} boolean OR Omega boolean OR {infinity} such that

(i) a(0) >= m(0) >= max{a(1), m(1)}, and

(ii) min{a(alpha), m(alpha)} >= max{a(beta), m(beta)}, whenever 1 <= alpha < beta < omega(1),

there is a separable metrizable space X such that A(alpha)-trInd X = a(alpha) and M(alpha)-trInd X = m(alpha) for each 0 <= alpha < omega(1).

Place, publisher, year, edition, pages
2009. Vol. 61, no 2, p. 327-344
Keyword [en]
inductive dimensions modulo P, absolute Borel class, absolutely multipricative Borel class, absolutely additive Borel class, separable metrizable space
National Category
Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-18271DOI: 10.2969/jmsj/06120327OAI: oai:DiVA.org:liu-18271DiVA, id: diva2:217842
Available from: 2009-05-16 Created: 2009-05-15 Last updated: 2009-05-16

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
Department of MathematicsThe Institute of Technology
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf