liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
STN8 protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
2005 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, Vol. 280, no 39, 33679-33686 p.Article in journal (Refereed) Published
Abstract [en]

Combination of reversed genetics with analyses of in vivo protein phosphorylation in Arabidopsis thaliana revealed that STN8 protein kinase is specific in phosphorylation of N-terminal threonine residues in D1, D2, and CP43 proteins, and Thr-4 in the PsbH protein of photosystem II. Phosphorylation of D1, D2, and CP43 in the light-exposed leaves of two Arabidopsis lines with T-DNA insertions in the stn8 gene was found significantly reduced in the assays with anti-phosphothreonine antibodies. Protein phosphorylation in each of the mutants was quantified comparatively to the wild type by mass spectrometric analyses of phosphopeptides released from the photosynthetic membranes and differentially labeled with stable isotopes. The lack of STN8 caused 50-60% reduction in D1 and D2 phosphorylation, but did not change the phosphorylation level of two peptides that could correspond to light-harvesting proteins encoded by seven different genes in Arabidopsis. Phosphorylation of the PsbH protein at Thr-4 was completely abolished in the plants lacking STN8. Phosphorylation of Thr-4 in the wild type required both light and prior phosphorylation at Thr-2, indicating that STN8 is a light-activated kinase that phosphorylates Thr-4 only after another kinase phosphorylates Thr-2. Analysis of the STN8 catalytic domain suggests that selectivity of STN8 in phosphorylation of the very N-terminal residues in D1, D2, and CP43, and Thr-4 in PsbH pre-phosphorylated at Thr-2 may be explained by the long loops obstructing entrance into the kinase active site and seven additional basic residues in the vicinity of the catalytic site, as compared with the homologous STN7 kinase responsible for phosphorylation of light-harvesting proteins.

Place, publisher, year, edition, pages
2005. Vol. 280, no 39, 33679-33686 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-13863DOI: 10.1074/jbc.M505729200OAI: oai:DiVA.org:liu-13863DiVA: diva2:21934
Available from: 2006-09-07 Created: 2006-09-07 Last updated: 2009-06-08
In thesis
1. Molecular characterization of protein phosphorylation in plant photosynthetic membranes
Open this publication in new window or tab >>Molecular characterization of protein phosphorylation in plant photosynthetic membranes
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Higher plants cannot move to a more favorable place when the environmental conditions are changing. To adapt to changes in light, temperature and access to water the plants had to evolve special mechanisms at the molecular level. Post-translational modifications of proteins, like phosphorylation, often serve as “on-and-off” switches in regulation of cellular activity and may affect protein-protein interactions. Photosynthesis in higher plants is regulated by reversible protein phosphorylation events, in a unique light- and redox-controlled system. Several biochemical methods are effectively used for characterization of phosphorylated proteins in photosynthetic membranes. Nevertheless, mass spectrometry is the most effective technique when it comes to identification of exact phosphorylation site(s) in the protein sequence, which is the ultimate evidence of protein phosphorylation. The same tandem mass spectrometry analysis identifies other in vivo post-translational modifications as well, such as acetylation of the N-terminus of mature protein. To study membrane proteins is a challenging project. In the present work the “shaving” of surface-exposed part of the membrane proteins, where phosphorylation occur, is used. In combination with mass spectrometry, this technique does not require the use of radioactive labeling or antibodies. The present work in spinach and Arabidopsis thaliana has identified and characterized several known phosphoproteins, new phosphorylation sites in well-known photosynthetic proteins, as well as two phosphoproteins previously unknown to be present in the photosynthetic membrane. Several photosystem II (PSII) core proteins become phosphorylated in their N-termini (D1, D2, CP43, PsbH), process involved in the regulation of the repair cycle of photo-damaged PSII complexes. The protein-protein interactions between PSII and its light harvesting complex (LHCII) seem to be affected by phosphorylation events in the interface area. In higher plants, phosphorylation sites have been identified in LHCII polypeptides, in one of the proteins (CP29) present in the interface area, as well as in the peripheral TSP9 protein. The TSP9 protein is unique among photosynthetic phosphoproteins, since it is a plant-specific soluble protein that becomes triple-phosphorylated in the middle part of the protein. It is also shown that photosystem I (PSI) is subjected to protein phosphorylation. The extrinsic PSI subunit PsaD becomes phosphorylated in its N-terminus. In addition, the latest characterized subunit of PSI, PsaP, is identified as a phosphoprotein. PsaP is an intrinsic protein assembled on the same side of the PSI complex as LHCII attaches. Several kinases are involved in phosphorylation of photosynthetic proteins, some more specific to PSII core proteins whereas others recognize LHCII proteins better. The STN8 kinase does not phosphorylate LHCII proteins, but is involved in the phosphorylation of the PSII core proteins D1, D2, CP43 and PsbH. STN8 is light-activated and is also specific in phosphorylation of threonine-4 (Thr-4) in the PsbH protein, but only after another kinase has phosphorylated Thr-2 first. A common feature of all kinases in plant photosynthetic membranes is the specificity for Thr residues and that the phosphorylation reactions occur in the N-terminal sequence of the proteins, except for the TSP9 protein. Nowadays, research is on the way to solve the complex network of regulation of photosynthetic activity via protein phosphorylation, but far more efforts are needed to get a complete view of the importance of all phosphorylation events and enzymatic specificity.

Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 959
Keyword
protein phosphorylation, photosynthesis, mass spectrometry, protein characterization
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-6665 (URN)91-85497-92-4 (ISBN)
Public defence
2006-10-13, Linden, HU, ing 65, Hälsouniversitetet, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2006-09-07 Created: 2006-09-07 Last updated: 2009-02-24

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. thesis

Authority records BETA

Vainonen, Julia P.Hansson, MariaVener, Alexander V.

Search in DiVA

By author/editor
Vainonen, Julia P.Hansson, MariaVener, Alexander V.
By organisation
Cell BiologyFaculty of Health Sciences
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf