liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Single and bilayer submicron arrays of fluorescent polymer on conducting polymer surface with surface energy controlled dewetting
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics . Linköping University, The Institute of Technology.
2005 (English)In: Nanotechnology, ISSN 0957-4484, Vol. 16, 437-443 p.Article in journal (Refereed) Published
Abstract [en]

Construction of luminescent single- and bilayer polymer arrays in micron and submicron scales through dewetting on a heterogeneous conducting polymer surface is demonstrated. We study the influence of the pattern geometry and film thickness of polymer dewetting upon annealing, and the morphology of created polymer arrays on the heterogeneous surface. The materials used for patterning are an insulating poly(methyl methacrylate) (PMMA) or a conjugated fluorescent polymer, poly(dioctylphenylthiophene) (PDOPT). The substrate used is the conducting polymer poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT–PSS), with modified heterogeneous surface energy obtained by application of a bare polydimethylsiloxane (PDMS) stamp.

Place, publisher, year, edition, pages
2005. Vol. 16, 437-443 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-13885DOI: 10.1088/0957-4484/16/4/018OAI: oai:DiVA.org:liu-13885DiVA: diva2:22127
Available from: 2006-07-07 Created: 2006-07-07 Last updated: 2009-10-05
In thesis
1. Surface Energy Patterning and Optoelectronic Devices Based on Conjugated Polymers
Open this publication in new window or tab >>Surface Energy Patterning and Optoelectronic Devices Based on Conjugated Polymers
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis concerns surface energy modification and patterning of the surfaces of conjugated polymers. Goniometry and Wilhelmy Balance techniques were used to evaluate the surface energy or wettability of a polymer’s surface; infrared reflectionabsorption spectroscopy (IRAS) was used to analyse the residuals on the surface as modified by a bare elastomeric stamp poly(dimethylsiloxane) (PDMS). The stamp was found to be capable of modifying a polymer surface. Patterning of a single and/or double layer of conjugated polymers on the surface can be achieved by surface energy controlled dewetting. Modification of a conjugated polymer film can also be carried out when a sample is subjected to electrochemical doping in an aqueous electrolyte. The dynamic surface energy changes during the process were monitored in-situ using the Wilhelmy balance method.

This thesis also concerns studies of conjugated polymer-based optoelectronics, including light-emitting diodes (PLEDs), that generate light by injecting charge into the active polymer layer, and solar cells (PSCs), that create electrical power by absorbing and then converting solar photons into electron/hole pairs. A phosphorescent metal complex was doped into polythiophene to fabricate PLEDs. The energy transfer from the host polymer to the guest phosphorescent metal (iridium and platinum) complex was studied using photoluminescence and electroluminescence measurements performed at room temperature and at liquid nitrogen temperature. PSCs were prepared using low-bandgap polyfluorene copolymers as an electron donor blended with several fullerene derivatives acting as electron acceptors. Energetic match is the main issue affecting efficient charge transfer at the interface between the polymers and the fullerene derivatives, and therefore the performance of the PSCs. Photoluminescence, luminescence quenching and the lowest unoccupied molecular orbital (LUMO) together with the highest occupied molecular orbital (HOMO) of the active materials in the devices were studied. A newly synthesized fullerene, that could match the low-bandgap polymers, was selected and used as electron acceptor in the PSCs. Photovoltaic properties of these PSCs were characterised, demonstrating one of the most efficient polymer:fullerene SCs that generate photocurrent at 1 μm.

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi, 2006
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 996
Keyword
Surface energy modification, Patterning, Dewetting, Conjugated polymer, plastic solar cell, Low bandgap, Electron acceptors and donors
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-7065 (URN)91-85497-00-2 (ISBN)
Public defence
2006-03-10, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Note
On the day of the defence the status of article number III was Manuscript and article VII was Accepted.Available from: 2006-07-07 Created: 2006-07-07 Last updated: 2009-10-05

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. thesis

Authority records BETA

Wang, XiangjunTvingstedt, KristoferInganäs, Olle

Search in DiVA

By author/editor
Wang, XiangjunTvingstedt, KristoferInganäs, Olle
By organisation
Biomolecular and Organic Electronics The Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 208 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf