liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Boundedness of the gradient of a solution to the Neumann-Laplace problem in a convex domain
Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
2009 (English)In: Comptes Rendus Mathematique, ISSN 1631-073X, Vol. 347, no 9-10, 517-520 p.Article in journal (Refereed) Published
Abstract [en]

It is shown that solutions of the Neumann problem for the Poisson equation in an arbitrary convex n-dimensional domain are uniformly Lipschitz. Applications of this result to some aspects of regularity of solutions to the Neumann problem on convex polyhedra are given. To cite this article: V. Mazya, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Place, publisher, year, edition, pages
2009. Vol. 347, no 9-10, 517-520 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-18754DOI: 10.1016/j.crma.2009.03.001OAI: oai:DiVA.org:liu-18754DiVA: diva2:221296
Available from: 2009-06-03 Created: 2009-06-03 Last updated: 2009-06-03

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

G. Maz'ya , Vladimir

Search in DiVA

By author/editor
G. Maz'ya , Vladimir
By organisation
Applied MathematicsThe Institute of Technology
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 380 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf