liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Observer-Based Residual Generation Method for Linear Differential-Algebraic Equation Systems
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
2009 (English)In: European Journal of Control, ISSN 0947-3580, E-ISSN 1435-5671Article in journal (Other academic) Submitted
Abstract [en]

Residual generation for linear differential-algebraic systems is considered. A new systematic method for observer-based residual generation is presented. The proposed design method places no restrictions on the system to be diagnosed. If the fault of interest can be detected in the system, the output from the design method is a residual generator in state-space form that is sensitive to the fault of interest. The method is iterative and relies only on constant matrix operations such as multiplications, null-space calculations and equivalence transformations, and thereby straightforward to implement. An illustrative numerical example is included, where the design method is applied to a nonobservable model of a robot manipulator.

Place, publisher, year, edition, pages
2009.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-19252OAI: oai:DiVA.org:liu-19252DiVA: diva2:223811
Available from: 2009-06-15 Created: 2009-06-15 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Residual Generation Methods for Fault Diagnosis with Automotive Applications
Open this publication in new window or tab >>Residual Generation Methods for Fault Diagnosis with Automotive Applications
2009 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The problem of fault diagnosis consists of detecting and isolating faults present in a system. As technical systems become more and more complex and the demands for safety, reliability and environmental friendliness are rising, fault diagnosis is becoming increasingly important. One example is automotive systems, where fault diagnosis is a necessity for low emissions, high safety, high vehicle uptime, and efficient repair and maintenance.

One approach to fault diagnosis, providing potentially good performance and in which the need for additional hardware is minimal, is model-based fault diagnosis with residuals. A residual is a signal that is zero when the system under diagnosis is fault-free, and non-zero when particular faults are present in the system. Residuals are typically generated by using a mathematical model of the system and measurements from sensors and actuators. This process is referred to as residual generation.

The main contributions in this thesis are two novel methods for residual generation. In both methods, systems described by Differential-Algebraic Equation (DAE) models are considered. Such models appear in a large class of technical systems, for example automotive systems. The first method consider observer-based residual generation for linear DAE-models. This method places no restrictions on the model, such as e.g. observability or regularity, in comparison with other previous methods. If the faults of interest can be detected in the system, the output from the design method is a residual generator, in state-space form, that is sensitive to the faults of interest. The method is iterative and relies on constant matrix operations, such as e.g. null-space calculations and equivalence transformations.

In the second method, non-linear DAE-models are considered. The proposed method belongs to a class of methods, in this thesis referred to as sequential residual generation, which has shown to be successful for real applications. This method enables simultaneous use of integral and derivative causality, and is able to handle equation sets corresponding to algebraic and differential loops in a systematic manner. It relies on a formal framework for computing unknown variables in the model according to a computation sequence, in which the analytical properties of the equations in the model as well as the available tools for equation solving are taken into account. The method is successfully applied to complex models of an automotive diesel engine and a hydraulic braking system.

Place, publisher, year, edition, pages
Linkö: Linköping University Electronic Press, 2009. 28 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1406
Keyword
Diagnosis, fault diagnosis, FDI, fault detection, residual, residual generation, residual generator, DAE
National Category
Information Science
Identifiers
urn:nbn:se:liu:diva-19104 (URN)LIU-TEK-LIC-2009:14 (Local ID)978-91-7393-608-8 (ISBN)LIU-TEK-LIC-2009:14 (Archive number)LIU-TEK-LIC-2009:14 (OAI)
Presentation
2009-06-04, Visionen, B-huset, ingång 27, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2009-06-15 Created: 2009-06-11 Last updated: 2012-05-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to Licentiate Thesis

Authority records BETA

Svärd, CarlNyberg, Mattias

Search in DiVA

By author/editor
Svärd, CarlNyberg, Mattias
By organisation
Vehicular SystemsThe Institute of Technology
In the same journal
European Journal of Control
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 210 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf