liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
The Reflection Principle for One-dimensional Quasiminimizers
Linköping University, Department of Mathematics.
2009 (English)Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In this paper the reflection-extension of one-dimensional quasiminimizers is studied.A brief introduction to quasiminimizers, focused on the one-dimensional ones, is given.The main result of the study concerns the size of the quasiminimizing constant of theextended function relative to the unextended one. Previous work by O. Martio gives anupper bound for this relation. This bound is lowered, and the new bound is proven to besharp.Sharp quasiminimizer constants are calculated for a few simple functions and theirreflection-extensions.

Abstract [sv]

I det här arbetet studeras reflektionsutvidgningen av endimensionella kvasiminimerare.En kortfattad introduktion till kvasiminimerare, fokuserad på de endimensionella, ges.Huvudresultatet av arbetet rör storleken av kvasiminimerarkonstanten för den utvidgade funktionen i förhållande till den outvidgade. Tidigare arbete av O. Martio ger en övre gräns för detta förhållande. Den  gränsen sänks, och den nya gränsen visas vara skarp.Skarpa kvasiminimerarkonstanter ges för ett par enkla funktioner och för deras reflektionsutvidgningar.

Place, publisher, year, edition, pages
2009. , 37 p.
National Category
URN: urn:nbn:se:liu:diva-19162ISRN: LiTH-MAT-EX--2009/04--SEOAI: diva2:225219
Subject / course
Applied Mathematics
2009-05-28, Kompakta rummet, Linköpings universitet, Linköping, 10:15 (Swedish)
Physics, Chemistry, Mathematics
Available from: 2009-06-25 Created: 2009-06-12 Last updated: 2011-07-08Bibliographically approved

Open Access in DiVA

fulltext(0 kB)315 downloads
File information
File name FULLTEXT01.pdfFile size 0 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Department of Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 315 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1132 hits
ReferencesLink to record
Permanent link

Direct link