liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Control of EGR and VGT for emission control and pumping work minimization in diesel engines
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
2006 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

Legislators steadily increase the demands on lowered emissions from heavy duty vehicles. To meet these demands it is necessary to integrate technologies like Exhaust Gas Recirculation (EGR) and Variable Geometry Turbochargers (VGT) together with advanced control systems. A control structure with PID controllers and selectors is proposed and investigated for coordinated control of EGR valve and VGT position in heavy duty diesel engines. Main control goals are to fulfill the legislated emission levels, to reduce the fuel consumption, and to fulfill safe operation of the turbocharger. These goals are achieved through regulation of normalized oxygen/fuel ratio and intake manifold EGR-fraction. These are chosen as main performance variables since they are strongly coupled to the emissions, compared to manifold pressure or air mass flow, which makes it easy to adjust set-points depending on e.g. measured emissions during an emission calibration process. In addition a mechanism for fuel efficient operation is incorporated in the structure, this is achieved by minimizing the pumping work. To design a successful control structure, a mean value model of a diesel engine is developed and validated. The intended applications of the model are system analysis, simulation, and development of model-based control systems. Model equations and tuning methods for the model parameters are described for each subsystem in the model. Static and dynamic validations of the entire model show mean relative errors that are less than 12%. Based on a system analysis of the model, a key characteristic behind the control structure is that oxygen/fuel ratio is controlled by the EGR-valve and EGR-fraction by the VGT-position, in order to handle a sign reversal in the system from VGT to oxygen/fuel ratio. For efficient calibration an automatic controller tuning method is developed. The controller objectives are captured in a cost function, that is evaluated utilizing a method choosing representative transients. The performance is evaluated on the European Transient Cycle. It is demonstrated how the weights in the cost function influence behavior, and that the tuning method is important in order to improve the control performance compared to if only a standard method is used. It is also demonstrated that the controller structure performs well regarding all control objectives. In combination with its efficient tuning, the controller structure thus fulfills all requirements for successful application.

Place, publisher, year, edition, pages
Institutionen för systemteknik , 2006. , 97 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1271
Keyword [en]
Mean value modeling, Oxygen fuel ratio, EGR-fraction, System analysis, Sign reversal, PID-control, European Transient Cycle
National Category
Control Engineering
URN: urn:nbn:se:liu:diva-7508ISBN: 91-85643-83-1OAI: diva2:22523
2006-10-20, C3, C-house, Linköpings universitet, Linköping, 10:15 (English)
Report code: LiU-TEK-LIC-2006:52.Available from: 2006-10-05 Created: 2006-10-05 Last updated: 2009-06-08

Open Access in DiVA

fulltext(2138 kB)5155 downloads
File information
File name FULLTEXT01.pdfFile size 2138 kBChecksum MD5
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Wahlström, Johan
By organisation
Vehicular SystemsThe Institute of Technology
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 5155 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 730 hits
ReferencesLink to record
Permanent link

Direct link