liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Fullerene-like B C N thin films a computational andexperimental study
Intel Corporation, Portland Technology Development, RA3-301, 5200 NE Elam Young Parkway, Hillsboro, OR 97124, USA.
Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-9402-1491
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Show others and affiliations
2004 (English)In: Materials Science and Engineering B, Vol. 113, no 3, 242-247 p.Article in journal (Refereed) Published
Abstract [en]

Ab initio calculations show that the energy cost for incorporating lattice defects such as pentagons and heptagons is significantly reduced for BCN compared to BN, thus promoting bending of basal planes in these compounds. Boron–carbon–nitride (Bsingle bondCsingle bondN) thin films with a fullerene-like (FL) microstructure were then deposited by dual cathode magnetron sputtering from C and B4C targets. Up to 1 μm thick films were grown at a total gas pressure of 3 mTorr (0.4 Pa) in varying Ar/N2 ratios, and substrate temperatures between 225 and 350 °C. Compositional and microstructural studies were performed using RBS, SEM and HREM, respectively. Depending on the deposition condition, ternary BxCyNz films with fullerene-like microstructure could be prepared in agreement with the calculations within the composition range 0 ≤ x ≤ 53, 15 ≤ y ≤ 62, and 24 ≤ z ≤ 50 at.%. Fullerene-like structures also tend to form at lower temperatures in the case of BCN compared to CN. Nanoindentation measurements show that all BxCyNz films exhibited a highly elastic response independent of elemental composition. In addition, the calculations suggest a driving force for C and BN phase separation.

Place, publisher, year, edition, pages
Elsevier , 2004. Vol. 113, no 3, 242-247 p.
Keyword [en]
Ab initio calculations; Fullerene-like materials; BCN compounds; Thin films Reactive magnetron sputtering
National Category
Natural Sciences
URN: urn:nbn:se:liu:diva-19704DOI: 10.1016/j.mseb.2004.08.013OAI: diva2:227659
Available from: 2009-07-16 Created: 2009-07-16 Last updated: 2015-03-06Bibliographically approved
In thesis
1. Carbon Nitride: Characterization and Protein Interactions
Open this publication in new window or tab >>Carbon Nitride: Characterization and Protein Interactions
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis concerns synthesis and characterization of carbon-based materials and theinvestigation of the possible use, of a selection of these materials, in biomedicalapplications. Protein adsorption and blood plasma tests were used for this purposeutilizing a surface sensitive technique called spectroscopic ellipsometry.

The materials were synthesized by physical vapor deposition and characterizedregarding microstructure, mechanical properties and optical properties. The ternaries BC-N and Si-C-N as well as carbon and carbon nitrides (CNx) of different microstructureshave been examined. In the B-C-N work, the intention was to investigate the possibilityto combine the two materials CNx and BN, interesting on their own regarding highhardness and extreme elasticity, to produce a material with even better properties.Theoretical calculations were performed to elucidate the different element substitutionsand defect arrangements in the basal planes promoting curvature in the fullerene-likemicrostructure. The Si-C-N ternary was investigated with the consideration of finding away to control the surface energy for certain applications. Amorphous carbon and threemicrostructures of CNx were analyzed by spectroscopic ellipsometry in the UV-VIS-NIRand IR spectral ranges in order to get further insight into the bonding structure of thematerial.

In the second part of this work focus was held on studies of macromolecularinteractions on silicon, carbon and CNx film surfaces using ellipsometry. One purposewas to find relevance (or not) for these materials in biological environments. Materials for bone replacement used today, e.g. stainless steel, cobalt-chromium alloys andtitanium alloys suffer from corrosion in body fluids, generation of wear particles inarticulating systems, infections and blood coagulation and cellular damage leading toimpaired functionality and ultimately to implant failure. Artificial heart valves made ofpyrolytic carbon are used today, with friction and wear problems. Thus, there is still aneed to improve biomaterials. The aim of the fourth paper was to investigate theinteraction between carbon-based materials and proteins. Therefore, amorphous carbon(a-C), amorphous (a), graphitic (g) and fullerene-like (FL) CNx thin films were exposedto human serum albumin and blood plasma and the amount of protein was measured insitu using spectroscopic ellipsometry. Surface located and accessible proteins after blood plasma incubations were eventually identified through incubations in antibody solutions.

Antibody exposures gave indications of surface response to blood coagulation,complement activation and clotting. The a-C and FL-CNx films might according to theresults have a future in soft tissue applications due to the low immuno-activity, whereasthe g-CNx film possibly might be a candidate for bone replacement applications.

"Layered" structures of fibrinogen, a fibrous but soft protein involved in manyprocesses in our body, were grown in situ and dynamically monitored by ellipsometry inorder to understand the adsorption process and molecule arrangement onto a siliconsurface.

In the last paper of this thesis, the effects of ion concentration and proteinconcentration on the refractive index of water-based solutions used in in situ ellipsometrymeasurements were demonstrated and spectral refractive index data for water solutionswith different ionic strengths and protein concentrations have been provided.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 67 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1263
National Category
Natural Sciences
urn:nbn:se:liu:diva-19710 (URN)978-91-7393-593-7 (ISBN)
Public defence
2009-08-28, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Available from: 2009-07-16 Created: 2009-07-16 Last updated: 2013-10-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. Thesis

Search in DiVA

By author/editor
Berlind, TorunGueorguiev, Gueorgui K.Johansson, Mats P.Stafström, SvenHultman, Lars
By organisation
Applied Optics The Institute of TechnologyThin Film PhysicsDepartment of Physics, Chemistry and Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 91 hits
ReferencesLink to record
Permanent link

Direct link