liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Increased resistance of lipofuscin-loaded prematurely senescent fibroblasts to starvation-induced programmed cell death
Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Experimental Pathology . Linköping University, Faculty of Health Sciences.
2007 (English)In: Biogerontology (Dordrecht), ISSN 1389-5729, Vol. 8, no 1, 43-53 p.Article in journal (Refereed) Published
Abstract [en]

Alterations of cellular structures often found in ageing cells is mainly the result of production of reactive oxygen species and a consequence of aerobic life. Both oxidative stress and decreased degradative capacity of lysosomal system cause accumulation of intralysosomal age-related pigment called lipofuscin. To investigate the influence of lipofuscin on cell function, we compared survival of lipofuscin-loaded and control human fibroblasts following complete starvation induced by exposure to phosphate-buffered saline (PBS). Starving of control fibroblasts resulted in lysosomal alkalinisation, relocation of cathepsin D to the cytosol, caspase-3 activation and, finally, cell death, which became evident 72 h after the start of exposure to PBS. Increase of lysosomal pH was significantly less prominent in lipofuscin-loaded cells than in controls and was accompanied neither by leakage of cathepsin D nor by caspase-3 activation even 96 h after the initiation of starvation. Suppression of autophagy by 3-methyladenine (3-MA) accelerated cell death, while inhibition of cathepsin D delayed it, implying an important role of autophagy in cell survival during starvation and showing the involvement of lysosomes in starvation-induced cell death. Disturbed apoptotic response found in lipofuscin-loaded cells can be interpreted as an example of hormesis—an adaptation to low doses of otherwise harmful agents, in this case of lipofuscin, which has a protective effect at moderate amounts but becomes toxic at large quantities.

Place, publisher, year, edition, pages
2007. Vol. 8, no 1, 43-53 p.
Keyword [en]
Ageing, Apoptosis, Autophagy, Cathepsin D, Hormesis, Lysosomal pH, 3-Methyladenine, Pepstatin A
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-14213DOI: 10.1007/s10522-006-9029-7OAI: diva2:22911
Available from: 2007-01-09 Created: 2007-01-09 Last updated: 2009-05-14
In thesis
1. Ageing-associated changes of lysosomal compartment: implications on cellular functions
Open this publication in new window or tab >>Ageing-associated changes of lysosomal compartment: implications on cellular functions
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The lysosomal compartment is a major site for intracellular degradation. Lysosomal degradation of the cell’s own constituents, so-called autophagy, not only provides a cell with nutrients, but also removes damaged and potentially dangerous endogenous structures, thus securing intracellular homeostasis. On the other hand, lysosomes have been shown to be involved in the initial stages of apoptosis, and the protective effect of autophagy has been suggested to switch to cell death when excessive.

Ageing-related changes of cellular structures result from damage caused by eactive oxygen species (ROS), which are an inevitable by-product of aerobic life. Intracellular turnover of compromised organelles and macromolecules, to which lysosomal degradation is a major contributor, does not function perfectly, even under favourable conditions. This inherent incompleteness of lysosomal degradation is responsible for the accumulation of a variety of nondegraded and functionally inefficient structures, which can be considered biological “garbage”. Biological “garbage” includes damaged non-degraded macromolecules and organelles, as well as intralysosomal non-degradable polymer-like structure called lipofuscin, or age pigment. Although accumulation of biological “garbage” has been suggested harmful, little is known about the mechanisms of its deleterious effects.

To gain a better understanding of ageing-related changes of the lysosomal compartment and their influence on cell functions, we focused on studying: (1) the role of macroautophagy in the turnover of organelles and lipofuscin formation; (2) the role of biological “garbage” accumulation in the development of ageing-related changes and eventual death of growth-arrested, postmitotic-like cells; (3) the possible cell-protective effect of mitosis; (4) the influence of lipofuscin on cell survival during complete starvation; and (5) the effects of lipofuscin on lysosomal stability.

As a model of induced biological “garbage” accumulation we used confluent human fibroblasts treated with the autophagy inhibitor 3-methyladenine (3MA). Alternatively, lysosomal degradation was suppressed by using the cysteine protease inhibitor leupeptin, or the cathepsin D inhibitor pepstatin A. As a cellular model of aged cells, we used lipofucsin-loaded human fibroblasts. Lipofuscin-loading was achieved by culturing confluent fibroblasts under hyperoxic conditions for 2-4 months. Using these in vitro models, the present study shows that: (1) inhibition of autophagy results in accumulation of lysosome-associated autofluorescent material and mitochondria with low membrane potential; (2) detrimental effect of biological “garbage” accumulation following inhibition of autophagy is prevented by continuous cell division; (3) lipofuscin-loaded cells are more resistant to starvation-induced cell death than control cells; (4) lysosomes of lipofuscinloaded fibroblasts are more resistant to the organelle-targeted stress then lysosomes of control cells.

Based on the results of the present study we conclude that properly operating autophagic machinery plays a crucial role in preventing age-related changes associated with accumulation of biological “garbage”. We also suggest that continual proliferation is the natural mechanism by which cells cope with the accumulation of non-degradable material, employing mechanical dilution during the cell division. Finally, we introduce an idea of lipofuscin being a hormetic agent, and possibly possessing some lysosome-stabilising properties. Better understanding of the influence of the age-related accumulation of biological “garbage” on cellular functions may be helpful for future development of anti-ageing therapy and management of age-associated pathologies.

Place, publisher, year, edition, pages
Institutionen för nervsystem och rörelseorgan, 2007. 68 p.
Linköping University Medical Dissertations, ISSN 0345-0082 ; 978
Ageing, Apoptosis, Biological gabarge, Hormesis, Lipofuscin, Lysosome
National Category
urn:nbn:se:liu:diva-8012 (URN)91-85643-13-0 (ISBN)
Public defence
2007-02-02, Berzeliussalen, Campus US, Linköpings Universitet, Linköping, 09:00 (English)
Available from: 2007-01-09 Created: 2007-01-09 Last updated: 2009-08-22

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. thesis

Search in DiVA

By author/editor
Stroikin, YuriJohansson, UnoÖllinger, Karin
By organisation
Experimental Pathology Faculty of Health Sciences
In the same journal
Biogerontology (Dordrecht)
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 87 hits
ReferencesLink to record
Permanent link

Direct link