liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Modeling and Validation of Power Steering Systems with Emphasis on Catch-Up Effect
Linköping University, Department of Management and Engineering. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems . Linköping University, The Institute of Technology.
2005 (English)In: Proceedings of The 9th Scandinavian International Conference on Fluid Power, SICFP’05, (Eds. J-O Palmberg), CD publication, Link¨oping University, Link¨oping, Sweden, 1st–3rd June, 2005Conference paper (Other academic)
Place, publisher, year, edition, pages
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-14252OAI: diva2:23022
Available from: 2007-03-15 Created: 2007-03-15 Last updated: 2009-06-01
In thesis
1. Hydraulic Power Steering System Design in Road Vehicles: Analysis, Testing and Enhanced Functionality
Open this publication in new window or tab >>Hydraulic Power Steering System Design in Road Vehicles: Analysis, Testing and Enhanced Functionality
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Demands for including more functions such as haptic guiding in power steering systems in road vehicles have increased with requirements on new active safety and comfort systems. Active safety systems, which have been proven to have a positive effect on overall vehicle safety, refer to systems that give the driver assistance in more and less critical situations to avoid accidents. Active safety features are going to play an increasingly important roll in future safety strategies; therefore, it is essential that sub systems in road vehicles, such as power steering systems, are adjusted to meet new demands.

The traditional Hydraulic Power Assisted Steering, HPAS, system, cannot meet these new demands, due to the control unit's pure hydro-mechanical solution. The Active Pinion concept presented in this thesis is a novel concept for controlling the steering wheel torque in future active safety and comfort applications. The concept, which can be seen as a modular add-on added to a traditional HPAS system, introduces an additional degree of freedom to the control unit. Different control modes used to meet the demands of new functionality applications are presented and tested in a hardware-in-the-loop test rig.

This thesis also covers various aspects of hydraulic power assisted steering systems in road vehicles. Power steering is viewed as a dynamic system and is investigated with linear and non-linear modeling techniques. The valve design in terms of area gradient is essential for the function of the HPAS system; therefore, a method involving optimization has been developed to determine the valve characteristic. The method uses static measurements as a base for calculation and optimization; the results are used in both linear and the non-linear models. With the help of the linear model, relevant transfer functions and the underlying control structure of the power steering system have been derived and analyzed. The non-linear model has been used in concept validation of the Active Pinion. Apart from concept validation and controller design of the active pinion, the models have been roven effective to explain dynamic phenomena related to HPAS systems, such as the chattering phenomena and hydraulic lag.

Place, publisher, year, edition, pages
Institutionen för ekonomisk och industriell utveckling, 2007. 116 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1068
Hydraulic Power Steering, Active Safety, Comfort function, Shuttering, Linear modelling
National Category
Fluid Mechanics and Acoustics
urn:nbn:se:liu:diva-8186 (URN)978-91-85643-00-4 (ISBN)
Public defence
2007-02-16, C3, Hus C, Linköpings Universitet, Linköping, 10:00 (English)
The printed version and the electronic version differ in that the electronic version contains two built in video films (see page 78 and page 89).Available from: 2007-03-15 Created: 2007-03-15 Last updated: 2009-05-13

Open Access in DiVA

No full text

Other links

Link to Ph.D. thesis

Search in DiVA

By author/editor
Rösth, MarcusPalmberg, Jan-Ove
By organisation
Department of Management and EngineeringThe Institute of TechnologyFluid and Mechanical Engineering Systems
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 364 hits
ReferencesLink to record
Permanent link

Direct link