liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
MIMO Multiplierless FIR System
Linköping University, Department of Electrical Engineering.
Linköping University, Department of Electrical Engineering.
2009 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The main issue in this thesis is to minimize the number of operations and the energy consumption per operation for the computation (arithmetic operation) part of DSP circuits, such as Finite Impulse Response Filters (FIR), Discrete Cosine Transform (DCT), and Discrete Fourier Transform (DFT) etc. More specific, the focus is on the elimination of most frequent common sub-expression (CSE) in binary, Canonic Sign Digit (CSD), Twos Complement or Sign Digit representation of the coefficients of non-recursive multiple input multiple output (MIMO)  FIR system , which can be realized using shift-and-add based operations only. The possibilities to reduce the complexity i.e. the chip area, and the energy consumption have been investigated.

We have proposed an algorithm which finds the most common sub expression in the binary/CSD/Twos Complement/Sign Digit representation of coefficients of non-recursive MIMO multiplier less FIR systems. We have implemented the algorithm in MATLAB. Also we have proposed different tie-breakers for the selection of most frequent common sub-expression, which will affect the complexity (Area and Power consumption) of the overall system. One choice (tie breaker) is to select the pattern (if there is a tie for the most frequent pattern) which will result in minimum number of delay elements and hence the area of the overall system will be reduced. Another tie-breaker is to choose the pattern which will result in minimum adder depth (the number of cascaded adders). Minimum adder depth will result in least number of glitches which is the main factor for the power consumption in MIMO multiplier less FIR systems. Switching activity will be increased when glitches are propagated to subsequent adders (which occur if adder depth is high). As the power consumption is proportional to the switching activity (glitches) hence we will use the sub-expression which will result in lowest adder depth for the overall system.

Place, publisher, year, edition, pages
2009. , 72 p.
Keyword [en]
MIMO Multiplierless FIR system, Generalised MCM Algorithm, Multiplierless Multiplication
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-20575ISRN: LiTH-ISY-EX--09/4322--SEOAI: diva2:235232
Subject / course
Electronics Systems
2009-09-03, nollstället, Electronics System Division, ISY Department, 15:00 (English)
Available from: 2009-09-16 Created: 2009-09-14 Last updated: 2011-07-08Bibliographically approved

Open Access in DiVA

fulltext(5299 kB)302 downloads
File information
File name FULLTEXT01.pdfFile size 5299 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Imran, MuhammadKhursheed, Khursheed
By organisation
Department of Electrical Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 302 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 309 hits
ReferencesLink to record
Permanent link

Direct link