liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Retinol-binding protein-4 attenuates insulin-induced phosphorylation of IRS1 and ERK1/2 in primary human adipocytes
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Ludwig Institute for Cancer Research, Stockholm, Sweden.
Ludwig Institute for Cancer Research, Stockholm, Sweden.
Show others and affiliations
2007 (English)In: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, ISSN 1530-6860, Vol. 21, no 13, 3696-3704 p.Article in journal (Refereed) Published
Abstract [en]

Reduced sensitivity to insulin in adipose, muscle, and liver tissues is a hallmark of type 2 diabetes. Animal models and patients with type 2 diabetes exhibit elevated levels of circulating retinol-binding protein (RBP4), and RBP4 can induce insulin resistance in mice. However, little is known about how RBP4 affects insulin signaling. We examined the mechanisms of action of RBP4 in primary human adipocytes. RBP4-treated adipocytes exhibited the same molecular defects in insulin signaling, via IRS1 to MAP kinase, as in adipocytes from patients with type 2 diabetes. Without affecting autophosphorylation of the insulin receptor, RBP4 blocked the insulin-stimulated phosphorylation of IRS1 at serine (307) [corresponding to serine (302) in the murine sequence] and concomitantly increased the EC50 (from 0.5 to 2 nM) for insulin stimulation of IRS1 phosphorylation at tyrosine. The phosphorylation of IRS1 at serine (312) [corresponding to serine (307) in the murine sequence] was not affected in cells from diabetic patients and was also not affected by RBP4. The EC50 for insulin stimulation of downstream phosphorylation of MAP kinase ERK1/2 was increased (from 0.2 to 0.8 nM) by RBP4. We show that ERK1/2 phosphorylation is similarly impaired in adipocytes from patients with type 2 diabetes. However, the sensitivity to insulin for downstream signaling to control of protein kinase B and glucose uptake was not affected by RBP4. When insulin-resistant adipocytes from patients with type 2 diabetes were incubated with antibodies against RBP4, insulin-induced phosphorylation of IRS1 at serine (307) was normalized and the EC50 for insulin stimulation of ERK1/2 phosphorylation was reduced. Endogenous levels of RBP4 were markedly reduced in adipocytes from obese or type 2 diabetic subjects, whereas expression levels of RBP4 mRNA were unaffected. These findings indicate that RBP4 may be released from diabetic adipocytes and act locally to inhibit phosphorylation of IRS1 at serine (307), a phosphorylation site that may integrate nutrient sensing with insulin signaling.

Place, publisher, year, edition, pages
2007. Vol. 21, no 13, 3696-3704 p.
Keyword [en]
Insulin resistance, type 2 diabetes, adipokine, protein phosphorylation, MAP kinase
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-20654DOI: 10.1096/fj.07-8173comPubMedID: 17575262OAI: oai:DiVA.org:liu-20654DiVA: diva2:235450
Available from: 2009-09-16 Created: 2009-09-16 Last updated: 2013-09-10Bibliographically approved
In thesis
1. Lipid Metabolism andInsulin Signalling in Adipocytes: enhanced autophagy in type 2 diabetes
Open this publication in new window or tab >>Lipid Metabolism andInsulin Signalling in Adipocytes: enhanced autophagy in type 2 diabetes
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy storage in the adipose tissue, to an extent leading to obesity, is associated with local as well assystemic insulin resistance. When insulin-producing beta-cells in the pancreas gradually fail tocompensate, plasma levels of glucose rise and overt type 2 diabetes is diagnosed. Adipocytes are largecells, mostly consisting of one big central lipid droplet, with the surrounding plasma membrane full ofsmall invaginations called caveolae. As caveolae contain the insulin receptor and several other insulinsignallingproteins, we have investigated several aspects of caveolae. We have also mapped mechanismsand defects in the insulin-signalling network in adipocytes from type 2 diabetic patients.

In paper I, we show that a subtype of caveolae has the capability to synthesize triglycerides from fattyacids and glycerol-3-phosphate. The triglyceride-synthesizing caveolae subtype also contains perilipin,suggesting the existence of a mechanism to protect newly made triglycerides from hydrolysis.

In paper II, we demonstrate that adipocytes from patients with type 2 diabetes have an attenuated insulinstimulatedphosphorylation of IRS-1 at Ser-307 (human sequence), which correlates with reduced insulinstimulatedphosphorylation of IRS-1 at tyrosine residues. Insulin-stimulated phosphorylation of IRS-1 atSer-307 is dependent on the nutrient sensor TORC1. This finding indicates that adipocytes from type 2diabetic patients have reduced TORC1 activity.

In paper III, we focus on the mechanisms for RBP4-induced insulin resistance. We also continue ourmapping of insulin-resistance in adipocytes from type 2 diabetes. These cells exhibit, in addition toimpaired insulin-stimulated glucose uptake and the defects presented in paper I, impaired insulinstimulatedphosphorylation of ERK. We do, however, not see any defects in PKB signalling. Neither dowe se any enhanced insulin-stimulated phosphorylation of IRS-1 at Ser-312 (human sequence), a site thatin mice is hyper-stimulated in response to high-fat feeding. Incubation with RBP4 recapitulates all defectswe so far have seen in type 2 diabetes except reduced insulin-stimulated glucose uptake. These results aremirrored by blockade of endogenously produced RBP4 in the incubations with adipocytes from type 2diabetic patients. In other words, RBP4-blocking antibodies restore all insulin-signalling defects we havefound in adipocytes from type 2 diabetic patients, except insulin-stimulated glucose uptake.

In paper IV we show by several approaches that TORC1 activation is down-regulated in adipocytes fromtype 2 diabetic patients. The main finding is that there is enhanced autophagy in those adipocytes.Interestingly, autophagy may be a mechanism to enhance the breakdown of stored triglycerides in theadipocyte.

In conclusion, our data suggest that caveolae, in addition to being micro-domains for insulin-signallingare metabolic platforms. We describe defects in insulin-signalling in adipocytes from type 2 diabeticpatients where the main finding is enhanced autophagy in these obese patients. The perceived starvationin adipose tissue might via secretion of adipokines, such as RBP4, have implications for local as well assystemic insulin-resistance.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 71 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1138
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-20656 (URN)978-91-7393-575-3 (ISBN)
Public defence
2009-10-09, Berzeliussalen, Hälsouniversitetet, Campus US, Linköpings Universitet, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2009-09-16 Created: 2009-09-16 Last updated: 2009-09-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedLink to Ph.D. Thesis

Authority records BETA

Öst, AnitaDanielsson, AnnaNyström, Fredrik HStrålfors, Peter

Search in DiVA

By author/editor
Öst, AnitaDanielsson, AnnaNyström, Fredrik HStrålfors, Peter
By organisation
Cell BiologyFaculty of Health SciencesInternal Medicine Department of Endocrinology and Gastroenterology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 146 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf