liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Obtaining Accurate and Comprehensible Data Mining Models: An Evolutionary Approach
Linköping University, Department of Computer and Information Science. Linköping University, The Institute of Technology.
2007 (English)Doctoral thesis, monograph (Other academic)
Abstract [en]

When performing predictive data mining, the use of ensembles is claimed to virtually guarantee increased accuracy compared to the use of single models. Unfortunately, the problem of how to maximize ensemble accuracy is far from solved. In particular, the relationship between ensemble diversity and accuracy is not completely understood, making it hard to efficiently utilize diversity for ensemble creation. Furthermore, most high-accuracy predictive models are opaque, i.e. it is not possible for a human to follow and understand the logic behind a prediction. For some domains, this is unacceptable, since models need to be comprehensible. To obtain comprehensibility, accuracy is often sacrificed by using simpler but transparent models; a trade-off termed the accuracy vs. comprehensibility trade-off. With this trade-off in mind, several researchers have suggested rule extraction algorithms, where opaque models are transformed into comprehensible models, keeping an acceptable accuracy.

In this thesis, two novel algorithms based on Genetic Programming are suggested. The first algorithm (GEMS) is used for ensemble creation, and the second (G-REX) is used for rule extraction from opaque models. The main property of GEMS is the ability to combine smaller ensembles and individual models in an almost arbitrary way. Moreover, GEMS can use base models of any kind and the optimization function is very flexible, easily permitting inclusion of, for instance, diversity measures. In the experimentation, GEMS obtained accuracies higher than both straightforward design choices and published results for Random Forests and AdaBoost. The key quality of G-REX is the inherent ability to explicitly control the accuracy vs. comprehensibility trade-off. Compared to the standard tree inducers C5.0 and CART, and some well-known rule extraction algorithms, rules extracted by G-REX are significantly more accurate and compact. Most importantly, G-REX is thoroughly evaluated and found to meet all relevant evaluation criteria for rule extraction algorithms, thus establishing G-REX as the algorithm to benchmark against.

Place, publisher, year, edition, pages
Institutionen för datavetenskap , 2007. , 254 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1086
Keyword [en]
Rule extraction, Ensembles, Data mining, Genetic programming, Artificial neural networks
National Category
Computer Science
URN: urn:nbn:se:liu:diva-8881ISBN: 978-91-85715-34-3OAI: diva2:23601
Public defence
2007-06-01, G110, Högskolan i Skövde, Högskolevägen, Box 408, 541 28 Skövde, Skövde, 10:00 (English)
Available from: 2007-05-14 Created: 2007-05-14 Last updated: 2009-05-04

Open Access in DiVA

fulltext(1683 kB)2387 downloads
File information
File name FULLTEXT01.pdfFile size 1683 kBChecksum SHA-1
Type fulltextMimetype application/pdf

By organisation
Department of Computer and Information ScienceThe Institute of Technology
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 2387 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 2779 hits
ReferencesLink to record
Permanent link

Direct link