liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence on X-ray energy spectrum, contrasting detail and detector on the signal-to-noise ratio (SNR) and detective quantum efficiency (DQE) in projection radiography
Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0003-3352-8330
Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0003-0209-498X
1992 (English)In: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 7, no 6, 1245-1263 p.Article in journal (Refereed) Published
Abstract [en]

A lower limit to patient irradiation in diagnostic radiology is set by the fundamental stochastics of the energy imparted to the image receptor (quantum noise). Image quality is investigated and expressed in terms of the signal-to-noise ratio due to quantum noise. The Monte Carlo method is used to calculate signal-to-noise ratios (SNRDelta S) and detective quantum efficiencies (DQEDelta S) in imaging thin contrasting details of air, fat, bone and iodine within a water phantom using X-ray spectra (40-140 kV) and detectors of CsI, BaFCl and Gd2O2S. The atomic composition of the contrasting detail influences considerably the values of SNRDelta S due to the different modulations of the energy spectra of primary photons passing beside and through the contrasting detail. By matching the absorption edges of the contrasting detail and the detector, a partially absorbing detector may be more efficient (yield higher SNRDelta S) than a totally absorbing one; this is demonstrated for the case of detecting an iodine detail using a CsI detector. The degradation of SNRDelta S and DQEDelta S due to scatter is larger when the detector is operated in the photon counting compared to in the energy integrating mode and for partially absorbing compared to totally absorbing detectors.

Place, publisher, year, edition, pages
1992. Vol. 7, no 6, 1245-1263 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-20916DOI: 10.1088/0031-9155/37/6/004OAI: oai:DiVA.org:liu-20916DiVA: diva2:236795
Available from: 2009-09-25 Created: 2009-09-25 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sandborg, MichaelAlm Carlsson, Gudrun

Search in DiVA

By author/editor
Sandborg, MichaelAlm Carlsson, Gudrun
By organisation
Radiation Physics Center for Medical Image Science and Visualization, CMIVDepartment of Radiation PhysicsFaculty of Health Sciences
In the same journal
Physics in Medicine and Biology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 84 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf