liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Selection of anti-scatter grids for different imaging tasks: the advantage of low atomic number cover and interspace materials
Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0003-3352-8330
n/a.
Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Center for Medical Image Science and Visualization, CMIV. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0003-0209-498X
Linköping University, Department of Medicine and Health Sciences, Radiation Physics . Linköping University, Faculty of Health Sciences.
1993 (English)In: British Journal of Radiology, ISSN 0007-1285, E-ISSN 1748-880X, Vol. 66, 1151-1163 p.Article in journal (Refereed) Published
Abstract [en]

A Monte Carlo computer program has been developed for the study of anti-scatter grids used in diagnostic radiology. The program estimates the scatter from soft tissue phantoms representative of either adult or paediatric examinations and uses dose increase, signal-to-noise ratio improvement and contrast improvement factors to study grid performance. It has been used to quantify the advantage of replacing grids with aluminium covers and interspaces by grids using materials of low atomic number for these components. Two approaches are used. First, the aluminium and low atomic number alternatives are compared for five grid ratios at fixed strip density and width and for tube potentials of 50, 70, 100 and 150 kV. Second, 44 commercially available grids are compared for three different imaging situations (lumbar spine, chest and paediatric). The results demonstrate that grids made with carbon fibre cover and cotton fibre interspace result in greater improvements in contrast and signal-to-noise ratio, and lower dose increase factors, than do grids made with aluminium. The dose reduction varies with irradiation conditions and is generally larger at lower tube potentials, higher grid ratios and lower strip densities. A typical reduction in mean absorbed dose in the patient is 30% in an adult lumbar spine (AP view) at 70 kV with a grid with 36 strips per centimetre and ratio 12.

Place, publisher, year, edition, pages
1993. Vol. 66, 1151-1163 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-20917DOI: 10.1259/0007-1285-66-792-1151OAI: oai:DiVA.org:liu-20917DiVA: diva2:236799
Available from: 2009-09-25 Created: 2009-09-25 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sandborg, MichaelAlm Carlsson, GudrunPersliden, Jan

Search in DiVA

By author/editor
Sandborg, MichaelAlm Carlsson, GudrunPersliden, Jan
By organisation
Radiation Physics Center for Medical Image Science and Visualization, CMIVDepartment of Radiation PhysicsFaculty of Health Sciences
In the same journal
British Journal of Radiology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf