liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Conductivity, Morphology, Interfacial Chemistry, and Stability of Poly(3,4- ethylene dioxythiophene)–Poly(styrene sulfonate): A Photoelectron Spectroscopy Study
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-8845-6296
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, The Institute of Technology.
Instituto Consiglio Nazionale delle Ricerche per l' Energetica e le Interfasi, Padova, Italy.
Show others and affiliations
2003 (English)In: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 41, no 21, 2561-2583 p.Article, review/survey (Refereed) Published
Abstract [en]

X-ray photoelectron spectroscopy (XPS) has been used to characterize poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDT/PSS), one of the most common electrically conducting organic polymers. A correlation has been established between the composition, morphology, and polymerization mechanism, on the one hand, and the electric conductivity of PEDT/PSS, on the other hand. XPS has been used to identify interfacial reactions occurring at the polymer-on-ITO and polymer-on-glass interfaces, as well as chemical changes within the polymer blend induced by electrical stress and exposure to ultraviolet light.

Place, publisher, year, edition, pages
John Wiley & Sons, 2003. Vol. 41, no 21, 2561-2583 p.
Keyword [en]
ESCA/XPS, poly(3, 4-ethylene dioxythiophene), conductivity, degradation, interfacial chemistry, conducting polymers
National Category
Polymer Chemistry Polymer Technologies
Identifiers
URN: urn:nbn:se:liu:diva-14581DOI: 10.1002/polb.10659ISI: 000185967300009OAI: oai:DiVA.org:liu-14581DiVA: diva2:23942
Available from: 2007-07-03 Created: 2007-07-03 Last updated: 2016-11-24Bibliographically approved
In thesis
1. Studies of Materials and Interfaces for Organic Electronics
Open this publication in new window or tab >>Studies of Materials and Interfaces for Organic Electronics
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Organic electronics is a rapidly evolving field with vast number of applications having high potential for commercial success. Although a great progress has been made, many organic electronic applications: organic light-emitting diodes (OLEDs), organic fieldeffect transistors (OFETs), organic solar cells, etc; still require further optimization to fulfill the requirements for successful commercialization. For many applications, available at this time organic materials do not provide satisfactory performance and stability, which hinders the possibility of a large-scale production. Therefore, the key ingredient needed for a successful improvement in performance and stability of organic electronic devices is in-depth knowledge of physical and chemical properties of molecular and polymeric materials. Since many applications encompass several thin film layers made of organics, and often also inorganic materials, the understanding of both organic-organic and hybrid interfaces is yet another important issue necessary for the successful development of organic electronics.

The research presented in this thesis is based mainly on photoelectron spectroscopy, which is an experimental technique especially suited to study both surfaces and interfaces of materials. In the thesis, the properties of one of the most successful polymeric materials, poly(3,4-ethylenedioxythiophene), often abbreviated as PEDOT, have been extensively studied. The research was done in close cooperation with an industrial partner – AGFA Gevaert, Belgium. The study was focused on the exploration of the intrinsic properties of the material, such as stability, morphology and conductivity. In addition, however, a possibility of alternation of these properties was also explored. This thesis reports also about investigations of the properties of various organic-organic and hybrid interfaces. The energy level alignment at such interfaces plays important role in charge injection and performance of the thin film organic-based devices. The conditions for different energy level alignment regimes at the various interfaces have been studied. The studies on interfaces were performed in close collaboration with the R&D division of DuPont Corporation, USA. This work led to the significant advances in understanding of the interface energetics and properties of industryrelevant organic materials, as represented not only by published scientific papers, but also patent applications.

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi, 2007
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1103
Keyword
Organic electronic, Polymeric materials, Organic light-emitting diodes (OLEDs), Organic fieldeffect transistors (OFETs), Organic solar cells
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
urn:nbn:se:liu:diva-9488 (URN)978-91-85831-94-4 (ISBN)
Public defence
2007-06-08, Plank, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2007-07-03 Created: 2007-07-03 Last updated: 2009-04-23

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Crispin, XavierOsikowicz, WojciechFahlman, MatsSalaneck, William R.

Search in DiVA

By author/editor
Crispin, XavierOsikowicz, WojciechFahlman, MatsSalaneck, William R.
By organisation
Surface Physics and ChemistryThe Institute of TechnologyPhysics and Electronics
In the same journal
Journal of Polymer Science Part B: Polymer Physics
Polymer ChemistryPolymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 806 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf