liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Poly(ethylene glycol) gradient for biochip development
Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
2007 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 23, no 22, 11319-11325 p.Article in journal (Refereed) Published
Abstract [en]

A novel method of producing a poly(ethylene glycol) (PEG)-based gradient matrix that varies gradually in thickness from 0 to 500 Å over a distance of 5−20 mm is presented. The gradient matrix is graft copolymerized from a mixture of PEG methacrylates onto organic thin films providing free radical polymerization sites initiated by UV irradiation at 254 nm. The films used as grafting platforms consist of either a spin-coated cycloolefin polymer or a self-assembled monolayer on planar gold. The thickness/irradiation gradient is realized by means of a moving shutter that slowly uncovers the modified gold substrate. The structural and functional characteristics of the gradient matrix are investigated with respect to thickness profile, degree of carboxylation, and subsequent immobilization of two model proteins of different sizes and shapes. These characteristics are studied with ellipsometry and infrared reflection−absorption microscopy using a grazing angle objective. It is revealed that the relatively small carboxylation agent used offers homogeneous activation throughout the gradient, even in the thick areas, whereas the diffusion/interpenetration and subsequent immobilization of large proteins is partially hindered. This is crucial information in biosensor design that can be easily obtained from a gradient experiment on a single sample. Moreover, the partially hindered protein interpenetration, the marginal swelling upon hydration, and the unspecific nature of the graft polymerization suggest a matrix growth mechanism that favors the formation of a bushlike polymer structure with a certain degree of cross linking.

Place, publisher, year, edition, pages
2007. Vol. 23, no 22, 11319-11325 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-14607DOI: 10.1021/la700729qOAI: oai:DiVA.org:liu-14607DiVA: diva2:24001
Available from: 2007-10-12 Created: 2007-10-12 Last updated: 2017-12-13
In thesis
1. Biochip design based on tailored ethylene glycols
Open this publication in new window or tab >>Biochip design based on tailored ethylene glycols
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Studies of biomolecular interactions are of interest for several reasons. Beside basic research, the knowledge gained from such studies is also very valuable in for example drug target identification. Medical care is another area where biomolecules may be used as biomarkers to aid physicians in making correct diagnosis. In addition, the highly specific interactions between antibodies and almost any substance opens up the possibilities to design systems for detection of trace amounts of both biological and non-biological substances within environmental restoration, law enforcement, correctional care, customs service and national security. A biochip, which contains a biologically active material, offers a means of monitoring the molecular interactions in the above applications in a sensitive and specific manner. The biochip is a key component of a biosensor, which also includes components for transforming the interaction events into a human-readable signal.

This thesis describes the use of poly(ethylene glycol) (PEG) in biochip design. Two different approaches are presented, the first based on ethylene glycol (EG)-containing alkyl thiol self-assembled monolayers (SAMs) on flat gold and the second on photo-induced graft copolymerisation of PEG-containing methacrylate monomers onto various substrates. The former is a two dimensional system where EG-terminated thiols are mixed with similar thiols presenting tail groups that mimic the explosive substance 2,4,6-trinitrotoluene (TNT). In an immunoassay, the detection limit for TNT was determined to fall in the range 1-10 µg/L. In the second approach, a branched three dimensional biosensor matrix (hydrogel) is proposed. The carboxymethylated (CM) dextran matrix, which is commonly used within the biosensing community, is not always ideal for studies of biointeractions, due to the non-specific binding frequently encountered in work with complex biological solutions and various proteins. To employ PEG, which displays a low non-specific binding of such species, is therefore an interesting option worth investigating. The use of a branched graft polymerised PEG matrix in biosensor applications is novel as compared to previous reports which have focused on linear PEG chains. The latter approach provides, at maximum, one functional group, per surface anchoring point, for immobilisation of sensor elements. Thus, it has the inherited disadvantage that it limits the number of available immobilisation sites. The present PEG matrix contains a large number of functional groups, for immobilisation of sensor elements, per grafting site and offers the potential of improved response upon binding to the analyte as demonstrated in a series of successful sensor experiments.

Furthermore, the nature of the process enables easy preparation of matrix patterns and gradients. In a PEG matrix gradient, protein permeability is studied and the capabilities of immobilising proteins are demonstrated. By combining the patterning technique with different monomers in a two-step process, an inert platform, lacking chemical attachment sites, is provided with arrays of spots (with immobilisation capabilities), which are conveniently addressed via microdispensing and used for biosensor purposes. The EG-terminated thiols present another means of generating such inert platforms, a route which is also investigated. To further explore the sensor quality of these spots, the concepts of patterning and gradient formation are combined and studied.

Abstract [sv]

Det är intressant att studera biomolekylära interaktioner av många anledningar. För att kunna bedriva framgångsrik läkemedelsutveckling är det oerhört viktigt att känna till hur olika molekyler samverkar i människokroppen. Inom sjukvården kan biomolekyler användas som biomarkörer, då närvaro av dem eller förändringar av deras koncentrationer är kopplade till sjukdomstillstånd, och därmed hjälper läkaren att ställa rätt diagnos. Dessutom kan de mycket specifika interaktionerna mellan antikroppar och (i princip) valfri substans användas för detektion av spårämnen vid miljösaneringsarbete, gränskontroller, polisarbete, fängelser och arbete med nationell säkerhet.

Den här avhandlingen beskriver hur polymeren polyetylenglykol (PEG) kan användas vid design av biochip. Ett biochip är en liten anordning, som kan användas för att detektera specifika molekyler med hjälp av en biologisk interaktion. Traditionellt har PEG använts inom biomaterialsektorn, men återfinns även i hygienartiklar som tvål och tandkräm. Ett annat användningsområde är konservering av bärgade träskepp och i en del litiumjonbatterier ingår PEG som en komponent. Dessutom pågår utveckling av PEG-innehållande skyddsvästar. I det här arbetet används PEG framför allt på grund av sin förmåga att minimera ospecifik inbindning av proteiner, som utgör en stor del av gruppen biomolekyler, till ytor på biochip. Två olika typer av ytbeläggningar, som innehåller den här polymeren, har använts. Den första typen ger mycket tunna (~0.000003 mm), tvådimensionella filmer medan den andra ger en något tjockare (~0.00005 mm), tredimensionell struktur (matris). De tvådimensionella filmerna har använts för att utveckla en sprängämnesdetektor med mycket hög känslighet (detektionsgräns mellan 1-10 ppb). En viktig beståndsdel i detta system är antikroppar riktade mot sprängämnet trinitrotoluen (TNT). Den tredimensionella matrisen är mer generell och kan användas för att studera många olika molekylära interaktioner. Tillverkningsmetoden av matrisen är baserad på belysning med ultraviolett ljus och är därmed lämpad för att skapa mönstrade ytor. Genom att blockera delar av ljusflödet begränsas tillväxten av matrisen till de belysta delarna. På så sätt har bland annat så kallade mikro-arrayer, bestående av mikrometerstora (tusendels millimeter) strukturer i ett regelbundet mönster, tillverkats. Tekniken tillåter även tillverkning av gradienter, där matrisens tjocklek varierar längs med provet, genom att belysa olika delar av provytan olika länge. Genom att undersöka dessa gradienter har information om matrisens genomsläpplighet för proteiner kunnat extraheras. Gradientkonceptet har även kombinerats med mikro-arraytillverkningen och gett möjlighet att studera interaktioner mellan flera olika modellproteiner och deras motsvarande antikroppar i olika tjocka matriser på en och samma yta.

Det finns ett stort antal sätt att utnyttja interaktionerna mellan olika molekyler på ett biochip. Ett tilltalande tillvägagångssätt är exempelvis att i en mikro-array binda in olika molekyler som kan fånga kliniskt intressanta biomolekyler, i syfte att skapa en hälsoprofil. Ett sådant biochip skulle ge möjlighet att parallellt detektera eller bestämma koncentrationen av ett stort antal biomolekyler i till exempel en droppe blod. På så sätt kan en diagnos snabbt ställas, kanske till och med utan att patienten behöver uppsöka sjukvården. Den utvecklade PEG-matrisen har god potential att fungera i en sådan applikation.

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi, 2007
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1111
Keyword
Biosensor, biochip, poly(ethylene glycol), self-assembled monolayer, photopolymerisation, microarray, biomolecular interaction, explosives detection
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-9578 (URN)978-91-85831-54-8 (ISBN)
Public defence
2007-09-13, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2007-10-12 Created: 2007-10-12 Last updated: 2015-10-13

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. thesis

Authority records BETA

Larsson (Kaiser), AndréasLiedberg, Bo

Search in DiVA

By author/editor
Larsson (Kaiser), AndréasLiedberg, Bo
By organisation
Sensor Science and Molecular PhysicsThe Institute of Technology
In the same journal
Langmuir
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 130 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf