liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt152",{id:"formSmash:upper:j_idt152",widgetVar:"widget_formSmash_upper_j_idt152",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt153_j_idt155",{id:"formSmash:upper:j_idt153:j_idt155",widgetVar:"widget_formSmash_upper_j_idt153_j_idt155",target:"formSmash:upper:j_idt153:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The equation X ∇det X = det X ∇ trX multiplication of cofactor pair systems, and the Levi-Civita equivalence problemPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2006 (English)In: Journal of Geometry and Physics, ISSN 0393-0440, Vol. 57, no 1, 251-267 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2006. Vol. 57, no 1, 251-267 p.
##### Keyword [en]

Killing tensor; Nijenhuis torsion; Cauchy–Riemann equations; Separation of variables
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-14677DOI: 10.1016/j.geomphys.2006.03.001OAI: oai:DiVA.org:liu-14677DiVA: diva2:24237
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt400",{id:"formSmash:j_idt400",widgetVar:"widget_formSmash_j_idt400",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt406",{id:"formSmash:j_idt406",widgetVar:"widget_formSmash_j_idt406",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt413",{id:"formSmash:j_idt413",widgetVar:"widget_formSmash_j_idt413",multiple:true});
Available from: 2007-10-03 Created: 2007-10-03
##### In thesis

Cofactor pair systems generalize the separable potential Hamiltonian systems. They admit *n* quadratic integrals of motion, they have a bi-Hamilton formulation, they are completely integrable and they are equivalent to separable Lagrangian systems. Cofactor pair systems can be constructed through a peculiar multiplicative structure of the so-called quasi-Cauchy–Riemann equations , where *J* and are special conformal Killing tensors.

In this work we have isolated the properties that are responsible for the multiplication, allowing us to give an elegant characterization of systems that admit multiplication. In this characterization the equation plays a central role.

We describe how multiplication of quasi-Cauchy–Riemann equations can be considered as a special case of a more general kind of multiplication, defined on the solution space of certain systems of partial differential equations. We investigate algebraic properties of this multiplication and provide several methods for constructing new systems with multiplicative structure. We also discuss the role of the multiplication in the theory of equivalent dynamical systems on Riemannian manifolds, developed by Levi-Civita.

1. Systems of Linear First Order Partial Differential Equations Admitting a Bilinear Multiplication of Solutions$(function(){PrimeFaces.cw("OverlayPanel","overlay24241",{id:"formSmash:j_idt706:0:j_idt710",widgetVar:"overlay24241",target:"formSmash:j_idt706:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1144",{id:"formSmash:lower:j_idt1144",widgetVar:"widget_formSmash_lower_j_idt1144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1145_j_idt1147",{id:"formSmash:lower:j_idt1145:j_idt1147",widgetVar:"widget_formSmash_lower_j_idt1145_j_idt1147",target:"formSmash:lower:j_idt1145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});