liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt295",{id:"formSmash:upper:j_idt295",widgetVar:"widget_formSmash_upper_j_idt295",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt304_j_idt310",{id:"formSmash:upper:j_idt304:j_idt310",widgetVar:"widget_formSmash_upper_j_idt304_j_idt310",target:"formSmash:upper:j_idt304:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Multiplication of solutions for linear overdetermined systems of partial differential equationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)In: Journal of Geometry and Physics, ISSN 0393-0440, E-ISSN 1879-1662, Vol. 58, no 8, 1015-1029 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2008. Vol. 58, no 8, 1015-1029 p.
##### Keyword [en]

Overdetermined systems of PDE’s, Cauchy–Riemann equations, Power series, Superposition principle
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-14678DOI: 10.1016/j.geomphys.2008.03.008OAI: oai:DiVA.org:liu-14678DiVA: diva2:24238
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1118",{id:"formSmash:j_idt1118",widgetVar:"widget_formSmash_j_idt1118",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1124",{id:"formSmash:j_idt1124",widgetVar:"widget_formSmash_j_idt1124",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1130",{id:"formSmash:j_idt1130",widgetVar:"widget_formSmash_j_idt1130",multiple:true});
Available from: 2007-10-03 Created: 2007-10-03 Last updated: 2017-12-13
##### In thesis

A large family of linear, usually overdetermined, systems of partialdifferential equations that admit a multiplication of solutions, i.e, a bilinearand commutative mapping on the solution space, is studied. Thisfamily of PDE’s contains the Cauchy–Riemann equations and the cofactorpair systems, included as special cases. The multiplication provides amethod for generating, in a pure algebraic way, large classes of non-trivialsolutions that can be constructed by forming convergent power series oftrivial solutions.

1. Systems of Linear First Order Partial Differential Equations Admitting a Bilinear Multiplication of Solutions$(function(){PrimeFaces.cw("OverlayPanel","overlay24241",{id:"formSmash:j_idt1398:0:j_idt1402",widgetVar:"overlay24241",target:"formSmash:j_idt1398:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1863",{id:"formSmash:j_idt1863",widgetVar:"widget_formSmash_j_idt1863",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1916",{id:"formSmash:lower:j_idt1916",widgetVar:"widget_formSmash_lower_j_idt1916",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1917_j_idt1919",{id:"formSmash:lower:j_idt1917:j_idt1919",widgetVar:"widget_formSmash_lower_j_idt1917_j_idt1919",target:"formSmash:lower:j_idt1917:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});