liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt211",{id:"formSmash:upper:j_idt211",widgetVar:"widget_formSmash_upper_j_idt211",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt212_j_idt214",{id:"formSmash:upper:j_idt212:j_idt214",widgetVar:"widget_formSmash_upper_j_idt212_j_idt214",target:"formSmash:upper:j_idt212:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Systems of Linear First Order Partial Differential Equations Admitting a Bilinear Multiplication of SolutionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2007 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Matematiska institutionen , 2007. , p. 20
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1135
##### Keyword [en]

Cauchy–Riemann equations, holomorphic functions, algebra
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-9949ISBN: 978-91-85895-78-6 (print)OAI: oai:DiVA.org:liu-9949DiVA, id: diva2:24241
##### Public defence

2007-11-09, Glashuset, Hus B, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt573",{id:"formSmash:j_idt573",widgetVar:"widget_formSmash_j_idt573",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt579",{id:"formSmash:j_idt579",widgetVar:"widget_formSmash_j_idt579",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt587",{id:"formSmash:j_idt587",widgetVar:"widget_formSmash_j_idt587",multiple:true});
Available from: 2007-10-03 Created: 2007-10-03 Last updated: 2009-05-04
##### List of papers

The Cauchy–Riemann equations admit a bilinear multiplication of solutions, since the product of two holomorphic functions is again holomorphic. This multiplication plays the role of a nonlinear superposition principle for solutions, allowing for construction of new solutions from already known ones, and it leads to the exceptional property of the Cauchy–Riemann equations that all solutions can locally be built from power series of a single solution *z* = *x* + i*y* ∈ C.

In this thesis we have found a differential algebraic characterization of linear first order systems of partial differential equations admitting a bilinear ∗-multiplication of solutions, and we have determined large new classes of systems having this property. Among them are the already known quasi-Cauchy–Riemann equations, characterizing integrable Newton equations, and the gradient equations ∇*f* = *M*∇*g* with constant matrices *M*. A systematic description of linear systems of PDEs with variable coefficients have been given for systems with few independent and few dependent variables.

An important property of the ∗-multiplication is that infinite families of solutions can be constructed algebraically as power series of known solutions. For the equation ∇*f *= *M*∇*g* it has been proved that the general solution, found by Jodeit and Olver, can be locally represented as convergent power series of a single simple solution similarly as for solutions of the Cauchy–Riemann equations.

1. The equation X ∇det X = det X ∇ trX multiplication of cofactor pair systems, and the Levi-Civita equivalence problem$(function(){PrimeFaces.cw("OverlayPanel","overlay24237",{id:"formSmash:j_idt626:0:j_idt630",widgetVar:"overlay24237",target:"formSmash:j_idt626:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Multiplication of solutions for linear overdetermined systems of partial differential equations$(function(){PrimeFaces.cw("OverlayPanel","overlay24238",{id:"formSmash:j_idt626:1:j_idt630",widgetVar:"overlay24238",target:"formSmash:j_idt626:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Multiplication for solutions of the equation grad f = M grad g$(function(){PrimeFaces.cw("OverlayPanel","overlay24239",{id:"formSmash:j_idt626:2:j_idt630",widgetVar:"overlay24239",target:"formSmash:j_idt626:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. An explicit formula for the polynomial remainder using the companion matrix of the divisor$(function(){PrimeFaces.cw("OverlayPanel","overlay24240",{id:"formSmash:j_idt626:3:j_idt630",widgetVar:"overlay24240",target:"formSmash:j_idt626:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1814",{id:"formSmash:j_idt1814",widgetVar:"widget_formSmash_j_idt1814",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1902",{id:"formSmash:lower:j_idt1902",widgetVar:"widget_formSmash_lower_j_idt1902",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1903_j_idt1905",{id:"formSmash:lower:j_idt1903:j_idt1905",widgetVar:"widget_formSmash_lower_j_idt1903_j_idt1905",target:"formSmash:lower:j_idt1903:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});