liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Long-standing gastric mucosal barrier dysfunction in Helicobacter pylori-induced gastritis in Mongolian gerbils
Linköping University, Department of Biomedicine and Surgery, Surgery. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedicine and Surgery, Surgery. Linköping University, Faculty of Health Sciences.
Pathology Research Department, Ryhov Hospital, Jönköping, Sweden.
Linköping University, Department of Biomedicine and Surgery, Surgery. Linköping University, Faculty of Health Sciences.
2004 (English)In: Helicobacter, ISSN 1083-4389, E-ISSN 1523-5378, Vol. 9, no 3, 217-227 p.Article in journal (Refereed) Published
Abstract [en]

Background and Aims. Helicobacter pylori infection causes chronic gastritis and leads to peptic ulcer and gastric adenocarcinoma. An impaired gastric mucosal barrier could be involved in these processes. Our aim was to investigate gastric barrier function in H. pylori-induced gastritis.

Methods.  Stripped gastric mucosal tissues of H. pylori-infected Mongolian gerbils (4 weeks and 70 weeks after inoculation, respectively) and controls were mounted in Ussing chambers. 51Cr-EDTA (paracellular probe) and horseradish peroxidase (HRP, protein antigen) were used to assess mucosal barrier function. The electrophysiological parameters of the mucosa (transepithelial potential, short circuit current, and transepithelial resistance) were monitored as measurements of barrier integrity and viability. Tissue histology was performed to assess inflammation.

Results.  In the antrum, both short-term gastritis [4.68 (3.88–5.74) × 10−6 vs. control 2.86 (2.34–3.77) × 10−6 cm/s, p < .001] and gastritis of long-standing [5.72 (3.88–10.94) × 10−6 cm/s, p < .001 vs. control] showed increased permeability to 51Cr-EDTA. In long-standing antral gastritis there was also an increased HRP flux [9.01 (2.98–45.02) vs. control 0.52 (0.06–1.20) pmol/h/cm2, p < .001]. In the corpus, permeability to 51Cr-EDTA was increased only in long-standing gastritis [4.63 (3.64–7.45) × 10−6 vs. control 2.86 (2.12–3.98) × 10−6 cm/s, p < .01]. Gastric mucosal permeability to 51Cr-EDTA was correlated to histological inflammation and inflammatory activity. The levels of serum anti-H. pylori immunoglobulin G were positively correlated to HRP flux and 51Cr-EDTA permeation.

Conclusions. Helicobacter pylori-induced gastritis in Mongolian gerbils was associated with a long-standing gastric mucosal barrier dysfunction. The barrier defect extended from the antrum into the corpus over time. This impaired barrier function may contribute to perpetuation of chronic inflammation and may be involved in H. pylori-associated carcinogenesis.

Place, publisher, year, edition, pages
2004. Vol. 9, no 3, 217-227 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-22344DOI: 10.1111/j.1083-4389.2004.00227.xLocal ID: 1545OAI: oai:DiVA.org:liu-22344DiVA: diva2:242657
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Experimental Helicobacter pylori infection in an animal model
Open this publication in new window or tab >>Experimental Helicobacter pylori infection in an animal model
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Background: Helicobacter pylori is a microaerophilic Gram-negative bacterium colonizing the human stomach. The prevalence of this infection is between 20-90% depending on geographic location. Comprehensive studies have shown significant relationships between H. pylori infection and chronic gastritis, peptic ulcer and gastric carcinoma. The mechanisms behind these associations are still unclear in many aspects. The objective of this thesis was to elucidate some pathogenetic aspects of H. pylori infection based on an animal model using Mongolian gerbils.

Aims: To determine bacterial profiles in the stomach of gerbils with and without H. pylori infection. To study the long-term morpho-functional development of H. pylori-induced gastritis. To investigate the gastric mucosal barrier function and to explore the effects of dietary antioxidant vitamin supplements on H. pylori-associated chronic gastritis.

Methods and results: Mongolian gerbils were inoculated with H. pylori ATCC 43504 or culture broth (controls). The animals were killed at scheduled time points. The gastric microflora was profiled and identified by temporal temperature gradient gel electrophoresis (TTGE), cloning and pyrosequencing of 16S rDNA variable V3 region. TTGE and pyrosequencing revealed the presence of a mixed bacterial flora in the stomach of both H. pylori infected and control animals. In both cases, lactobacilli appeared to prevail. In H. pylori-infected gerbils, serum concentrations of anti-H. pylori IgG and gastrin increased over time. Mucosal epithelial proliferation quantified after immunohistochemical labeling with 5-bromo-2'-deoxy-uridine was increased in the antrum in short-term gastritis, followed by an increase in the corpus in the long-term. Gene expression of pro-inflammatory cytokines was quantitated by real-time RT-PCR. Interleukin-1beta and tumor necrosis factor-alpha expression was increased in H. pylori-infected gerbils. Beta-actin was not a reliable endogenous control for relative quantitative RT-PCR. Histological parameters of gastritis were semiquantitatively assessed and expressed as a "gastritis score". Gastritis scores increased over time and reached a peak 32 weeks after inoculation. With time there was an expansion of gastritis from the antrum to the corpus. Severe inflammation, ulcer development and pseudopyloric metaplasia (glandular atrophy) were characteristic features. Gastric mucosal samples were mounted in Ussing chambers and 51Cr-EDTA (paracellular probe) and horseradish peroxidase (HRP, protein antigen) were used as indicators of gastric mucosal barrier function. Short-term gastritis showed increased mucosal permeability to 51Cr-EDTA in the antrum. Long-standing gastritis was associated with increased 51Cr-EDTA permeation in both the antrum and corpus and an increased HRP flux in the antrum. In the vitamin supplement study, concentrations of 3-nitrotyrosine (nitrosative protein damage) and thiobarbituric acid reactive substances (TBARS) (oxidative lipid damage) in the gastric mucosa were determined with an immunodot blot and a fluorometric method, respectively. Mucosal concentrations of carbonyl carbons on proteins (oxidative protein damage) and 8-hydroxydeoxyguanosine (oxidative DNA damage) were determined by ELISA. Vitamin supplements had no effect on the colonization with H. pylori. Vitamin C as well as vitamin E supplements reduced mucosal 3-nitrotyrosine concentrations to normal levels in the infected animals. Vitamin E supplement induced decreased mucosal protein carbonyls and TBARS in short-term gastritis. In addition, vitamin C supplement caused attenuated mucosal oxidative DNA damage and milder mucosal inflammation in short-term gastritis.

Conclusions: Lactobacilli, the prevailing indigenous bacterium in the stomach of gerbils, may have a probiotic impact on the colonization of H. pylori. The long-term morpho-functional development in the stomach of H. pylori-infected Mongolian gerbils resembles that of H. pylori-infected humans. H. pylori-induced gastritis in gerbils is associated with a long-standing gastric mucosal barrier dysfunction, which follows the extension of chronic gastritis from the antrum into the corpus over time. This impaired barrier function may contribute to perpetuation of chronic inflammation and may be involved in H. pylori-associated carcinogenesis. Vitamin C as well as vitamin E supplements lead to some short-term protective effects on H. pylori-induced stritis but these effects seem to subside over time when the infection persists.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2004. 62 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 876
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-24034 (URN)3590 (Local ID)91-7373-850-6 (ISBN)3590 (Archive number)3590 (OAI)
Public defence
2004-12-10, Berzeliussalen, Hälsouniversitetet, Linköping, 13:00 (Swedish)
Opponent
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2012-10-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sun, Yi-QianSöderholm, Johan DBorch, Kurt

Search in DiVA

By author/editor
Sun, Yi-QianSöderholm, Johan DBorch, Kurt
By organisation
SurgeryFaculty of Health Sciences
In the same journal
Helicobacter
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf