liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Colocalization of insulin receptor and insulin receptor substrate-1 to caveolae in primary human adipocytes
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
Show others and affiliations
2004 (English)In: European Journal of Biochemistry, ISSN 0014-2956, E-ISSN 1432-1033, Vol. 271, no 12, 2471-2479 p.Article in journal (Refereed) Published
Abstract [en]

Caveolae are plasma membrane invaginations with several functions, one of which appears to be to organize receptor mediated signalling. Here we report that in primary human subcutaneous adipocytes the insulin receptor was localized to caveolae by electron microscopy/immunogold detection and by isolating caveolae from plasma membranes. Part of insulin receptor substrate 1 (IRS1), the immediate downstream signal mediator, was colocalized with the insulin receptor in the plasma membrane and caveolae, as demonstrated by immunofluorescence microscopy, immunogold electron microscopy, and immunogold electron microscopy of transfected recombinant HA-IRS1. In contrast, rat epididymal adipocytes lacked IRS1 at the plasma membrane. Depletion of cholesterol from the cells using β-cyclodextrin blocked insulin stimulation of glucose uptake, insulin inhibition of perilipin phosphorylation in response to isoproterenol, and insulin stimulation of protein kinase B and Map-kinases extracellular signal-related kinase (ERK)1/2 phosphorylation. Insulin-stimulated phosphorylation of the insulin receptor and IRS1 was not affected, indicating that caveolae integrity is required downstream of IRS1. In conclusion we show that insulin receptor and IRS1 are both caveolar proteins and that caveolae are required for both metabolic and mitogenic control in human adipocytes. Our results establish caveolae as foci of insulin action and stress the importance of examining human cells in addition to animal cells and cell lines.

Place, publisher, year, edition, pages
2004. Vol. 271, no 12, 2471-2479 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-22408DOI: 10.1111/j.1432-1033.2004.04177.xLocal ID: 1620OAI: oai:DiVA.org:liu-22408DiVA: diva2:242721
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Caveolae structure and importance in insulin action
Open this publication in new window or tab >>Caveolae structure and importance in insulin action
2004 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Type II diabetes is a disease characterized by chronic hyperglycaemia and abnormalities in lipid metabolism that affects approximately 5% of the population in the Western World. Caveolae are invaginations of the plasma membrane, described as 25-150 nm omega shaped structures, which are enriched in cholesterol, sphingolipids and the constituent protein caveolin. Caveolae have been shown to be involved in signal transduction, uptake over the plasma membrane and intracellular transport. By electron microscopy studies of cell membranes and biochemical analyses of isolated caveolae, we report that in rat adipocytes glucose transporter GLUT4 was translocated to caveolae in response to insulin. Insulin stimulation increased the amount of GLUT4 in the plasma membrane, but the ratio between GLUT4 in the planar and caveolae membrane remained constant. These findings indicate that caveolae are the locales for glucose uptake in the cell. We also report that the insulin receptor, independently of insulin stimulation, was localised in caveolae in human adipocytes. In these cells depletion of cholesterol destroyed the caveolae structure and the adipocytes became insulin resistant. Cholesterol depletion did not affect the insulinstimulated autophosphorylation of the insulin receptor nor the phosphorylation of the downstream IRS1. Further signalling to metabolic control or mitogenic control was inhibited, however. With transmission electron-, scanning electron- and fluorescence-microscopic techniques, we studied the ultrastructure and distribution of caveolae in the rat adipocyte. We found that caveolae can be divided into two subpopulations, small (<50 nm) and large (50-150 nm). The large caveolae are connected to the extracellular space via narrow necks and the orifices of caveolae were herein shown in primary adipocytes for the first time. Caveolin is located in the membrane proximal part of the small caveolae and to the neck in the large caveolae. The insulin receptor substrate IRS 1 was shown to be localized to caveolae in human adipocytes and to colocalize with the insulin receptor. In rat adipocytes, however, IRS1 was not localized to the plasma membrane in the absence of insulin stimulation. By transfection of rat adipocytes with human IRS1 we found that human IRS1 bound to the plasma membrane in the rat adipocyte, whereas the endogenous rat IRS1 did not. Taken together, caveolae seem to be closely involved in regulation of insulin action in the adipocyte.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2004. 53 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 875
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-24065 (URN)3624 (Local ID)91-7373-851-4 (ISBN)3624 (Archive number)3624 (OAI)
Public defence
2004-12-10, Berzeliussalen, Hälsouniversitetet, Linköping, 09:00
Opponent
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2012-10-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Karlsson, MargaretaThorn, HansDanielsson, AnnaStenkula, KarinÖst, AnitaGustavsson, JohannaNyström, FredrikStrålfors, Peter

Search in DiVA

By author/editor
Karlsson, MargaretaThorn, HansDanielsson, AnnaStenkula, KarinÖst, AnitaGustavsson, JohannaNyström, FredrikStrålfors, Peter
By organisation
Cell biologyFaculty of Health SciencesDepartment of Medicine and Care
In the same journal
European Journal of Biochemistry
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf