liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Relocalized redox-active lysosomal iron is an important mediator of oxidative-stress-induced DNA damage
Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Pharmacology.
Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
2004 (English)In: Biochemical Journal, ISSN 0264-6021, Vol. 378, no 3, 1039-1045 p.Article in journal (Refereed) Published
Abstract [en]

Oxidative damage to nuclear DNA is known to involve site-specific Fenton-type chemistry catalysed by redox-active iron or copper in the immediate vicinity of DNA. However, the presence of transition metals in the nucleus has not been shown convincingly. Recently, it was proposed that a major part of the cellular pool of loose iron is confined within the acidic vacuolar compartment [Yu, Persson, Eaton and Brunk (2003) Free Radical Biol. Med. 34, 1243-1252, Persson, Yu, Tirosh, Eaton and Brunk (2003) Free Radical Biol. Med. 34, 1295-1305]. Consequently, rupture of secondary lysosomes, as well as subsequent relocation of labile iron to the nucleus, could be an important intermediary step in the generation of oxidative damage to DNA. To test this concept we employed the potent iron chelator DFO (desferrioxamine) conjugated with starch to form an HMM-DFO (high-molecular-mass DFO complex). The HMM-DFO complex will enter cells only via fluid-phase endocytosis and remain within the acidic vacuolar compartment, thereby chelating redox-active iron exclusively inside the endosomal/lysosomal compartment. Both free DFO and HMM-DFO equally protected lysosomal-membrane integrity against H2O 2-induced oxidative disruption. More importantly, both forms of DFO prevented H2O2-induced strand breaks in nuclear DNA, including telomeres. To exclude the possibility that lysosomal hydrolases, rather than iron, caused the observed DNA damage, limited lysosomal rupture was induced using the lysosomotropic detergent O-methyl-serine dodecylamine hydrochloride, subsequently, hardly any DNA damage was found. These observations suggest that rapid oxidative damage to cellular DNA is minimal in the absence of redox-active iron and that oxidant-mediated DNA damage, observed in normal cells, is mainly derived from intralysosomal iron translocated to the nucleus after lysosomal rupture.

Place, publisher, year, edition, pages
2004. Vol. 378, no 3, 1039-1045 p.
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-23685DOI: 10.1042/BJ20031029Local ID: 3183OAI: diva2:244000
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2011-01-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Kurz, TinoBrunk, Ulf
By organisation
Faculty of Health SciencesPharmacologyPathologyDepartment of Clinical Pathology and Clinical Genetics
In the same journal
Biochemical Journal
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 52 hits
ReferencesLink to record
Permanent link

Direct link