liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On-line monitoring of solutes in dialysate using wavelength-dependent absorption of ultraviolet radiation
Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
2003 (English)In: Medical and Biological Engineering and Computing, ISSN 0140-0118, E-ISSN 1741-0444, Vol. 41, no 3, 263-270 p.Article in journal (Refereed) Published
Abstract [en]

The aim of the study was to assess the wavelength dependence of the UV absorbance during monitoring of different compounds in the dialysate. UV absorbance was determined by using a double-beam spectrophotometer on dialysate samples taken at pre-determined times during dialysis, over a wavelength range of 180–380 nm. Concentrations of several removed substances, such as urea, creatinine, uric acid, phosphate and β 2-microglobulin, were determined in the blood and in the spent dialysate samples using standard laboratory techniques. Millimolar extinction coefficients, for urea, creatinine, monosodium phosphate and uric acid were determined during laboratory bench experiments. The correlation between UV absorbance and substances both in the dialysate and in the blood was calculated at all wavelengths. A time-dependent UV absorbance was determined on the collected dialysate samples from a single dialysis session over a wavelength range of 200–330 nm. The highest contribution from observed compounds relative to the mean value of the absorbance was found around 300 nm and was approximately 70%. The main contribution to the total absorbance from uric acid was confirmed at this wavelength. The highest correlation for uric acid, creatinine and urea was obtained at wavelengths from 280 nm to 320 nm, both in the spent dialysate and in the blood. The wavelength region with the highest correlation for phosphate and β 2-microglobulin, with a suitable UV-absorbance dynamic range, was from 300 to 330 nm. In the wavelength range of 220–270 nm the highest absorbance sensitivity for the observed substances was obtained. A suitable wavelength range for instrumental design seems tobe around 290–330 nm. The relatively high correlation between UV absorbance and the substances in the spent dialysate and in the blood indicates that the UV-absorbance technique can estimate the removal of several retained solutes known to accumulate in dialysis patients.

Place, publisher, year, edition, pages
2003. Vol. 41, no 3, 263-270 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-24476DOI: 10.1007/BF02348430Local ID: 6592OAI: oai:DiVA.org:liu-24476DiVA: diva2:244796
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2017-12-13
In thesis
1. Photon propagation in tissue and in biological fluids: applied for vascular imaging and haemodialysis monitoring
Open this publication in new window or tab >>Photon propagation in tissue and in biological fluids: applied for vascular imaging and haemodialysis monitoring
2003 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on the photon propagation in tissue and in biological fluids in two main areas: (1) optical vessel imaging and (2) monitoring solutes removed in haemodialysis.

The aim of the optical vessel imaging study was to design and assess a new optical scanning technique for vessel imaging using NIR radiation. The results indicated that veins could be determined at three vascular levels (superficial, intermediate and deep) down to 3 mm. Moreover, experimental results demonstrated that the vessel imaging facility depends upon source-detector separation, relative position, and vessel depth and does not depend essentially on the radiant power from the light source. After vessel imaging the technique can potentially be used to monitor several physiological parameters on a selected vascular bed (e.g. local blood flow, oxygen saturation).

The theoretical model, based on the diffusion approximation, was developed to explain theoretically the origin of experimental results. An analytical solution was obtained describing photon propagation under certain conditions during vessel identification. The modelled results confirmed previously obtained experimental results.

A new optical method for monitoring solutes in a spent dialysate using absorption of UV-radiation was developed. The obtained on-line UV-absorbance curve demonstrates the possibility to follow a single haemodialysis session continuously and to monitor deviations in the dialysator performance using UV-absorbance. The experimental results indicated that the UV-absorbance correlates well to the concentration of several solutes known to accumulate in dialysis patients indicating that the technique can be used to estimate the removal of retained substances.

Furthermore, a clinical study suggested that the delivered dialysis dose in terms of the traditional urea Kt/V could be estimated by on-line measurement of the UV-absorption in the spent dialysate. This means that the UV-method may add a new methodology for improvement of the quality and adequacy of the dialysis.

An investigation of the wavelength dependence of the UV-absorbance when monitoring different compounds in the dialysate showed that the UV-absorbance correlates well to several small molecular weight solutes ( < 200 D), around 290-310 nm. The highest contribution to the total absorbance from the observed compounds was confirmed in this wavelength region. The results indicated, that it might be possible to measure the elimination of several substances that are retained in the uraemic patients and with potential clinical significance. From thisviewpoint, the UV-absorbance monitoring technique may become a more universal method to ensure the quality and adequacy of the dialysis.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2003. 164 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 818
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-24500 (URN)6624 (Local ID)91-737-3638-4 (ISBN)6624 (Archive number)6624 (OAI)
Public defence
2003-05-06, Berzeliussalen, Universitetssjukhuset, Linköping, 09:00 (Swedish)
Opponent
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2013-01-29

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Fridolin, IvoLindberg, Lars-Göran

Search in DiVA

By author/editor
Fridolin, IvoLindberg, Lars-Göran
By organisation
Department of Biomedical EngineeringThe Institute of Technology
In the same journal
Medical and Biological Engineering and Computing
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 352 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf