liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Localization of the insulin receptor in caveolae of adipocyte plasma membrane
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
Show others and affiliations
1999 (English)In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 13, no 14, 1961-1971 p.Article in journal (Refereed) Published
Abstract [en]

The insulin receptor is a transmembrane protein of the plasma membrane, where it recognizes extracellular insulin and transmits signals into the cellular signaling network. We report that insulin receptors are localized and signal in caveolae microdomains of adipocyte plasma membrane. Immunogold electron microscopy and immunofluorescence microscopy show that insulin receptors are restricted to caveolae and are colocalized with caveolin over the plasma membrane. Insulin receptor was enriched in a caveolae-enriched fraction of plasma membrane. By extraction with β-cyclodextrin or destruction with cholesterol oxidase, cholesterol reduction attenuated insulin receptor signaling to protein phosphorylation or glucose transport. Insulin signaling was regained by spontaneous recovery or by exogenous replenishment of cholesterol. β-Cyclodextrin treatment caused a nearly complete annihilation of caveolae invaginations as examined by electron microscopy. This suggests that the receptor is dependent on the caveolae environment for signaling. Insulin stimulation of cells prior to isolation of caveolae or insulin stimulation of the isolated caveolae fraction increased tyrosine phosphorylation of the insulin receptor in caveolae, demonstrating that insulin receptors in caveolae are functional. Our results indicate that insulin receptors are localized to caveolae in the plasma membrane of adipocytes, are signaling in caveolae, and are dependent on caveolae for signaling.

Place, publisher, year, edition, pages
1999. Vol. 13, no 14, 1961-1971 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-25036Local ID: 9460OAI: oai:DiVA.org:liu-25036DiVA: diva2:245362
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Mechanisms of insulin signaling and the role of caveolae
Open this publication in new window or tab >>Mechanisms of insulin signaling and the role of caveolae
2001 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Insulin regulates metabolic as well as mitogenic processes in target cells, involving a large number of mediators of signal transduction. In its role as a growth factor, insulin stimulates cell growth, in a process we demonstrate requires the participation of the Raf-1 kinase.

Caveolae are invaginations of the plasma membrane, involved in signal transduction and intracellular transport of cholesterol. Caveolae are enriched in cholesterol, sphingolipids and the constituent protein caveolin. Herein we report that the insulin receptor is located in caveolae of plasma membrane from adipocytes. By confocal and electron microscopy we show co-localization of caveolin and the insulin receptor. Additionally, the insulin receptor independently of insulin stimulation is enriched in caveolae isolated by cell fractionation.

Cholesterol depletion has been shown to flatten caveolae and affect processes which occur in these domains. We show that depletion of cholesterol in adipocytes destroys caveolae and inhibits insulin-stimulated tyrosine phosphorylation of the insulin receptor substrate-1 (IRS-1 ), without affecting insulin receptor ligand binding or its autophosphorylation. Cholesterol-depleted adipocytes showed a decreased insulin-stimulated glucose uptake and phosphorylation of A TP citrate-lyase. Cholesterol depletion did not affect insulin's effect on the MAPK kinases ERK 1/2. She, which has been described to mediate an alternative pathway to that mediated by IRS-1 for insulin mitogenic regulation, was not involved in the regulation of the MAP kinases by insulin in adipocytes. We conclude that some other mediators which are not dependent on caveolae integrity must exist for regulation of this pathway.

The effects of cholesterol depletion on caveolae and insulin signaling prompted us to study caveolae in models of insulin resistance. We show that adipocytes from the obese and insulin resistant Zucker fa/fa rats have reduced amounts of cholesterol in caveolae compared with their lean littermates. Adipocytes of Zucker fa/fa rats have been shown to express high levels of TNF-α. We demonstrate that TNF-α treatment lowers the amount of cholesterol in caveolae in adipocytes from normal rats.

The results presented in this thesis demonstrate that insulin signaling originates in caveolae invaginations of the plasma membrane where the insulin receptor is located. Caveolae are required for certain metabolic effects of insulin but not for activation of the MAP kinase pathway, a scenario similar to what is found in cases of insulin resistance and type 2 diabetes. Moreover, alteration of the amount of cholesterol or caveolae leads to insulin resistance, suggesting that caveolae play a central role in insulin resistance and diabetes.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2001. 45 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 684
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-25698 (URN)10074 (Local ID)91-7219-974-1 (ISBN)10074 (Archive number)10074 (OAI)
Public defence
2001-06-08, Berzeliussalen, Universitetssjukhuset, Linköping, 09:00 (Swedish)
Opponent
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2012-09-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Full-text

Authority records BETA

Gustavsson, JohannaKarlsson, MargaretaThorn, HansLindroth, MargarethaHolmgren Peterson, KajsaMagnusson, Karl-EricStrålfors, Peter

Search in DiVA

By author/editor
Gustavsson, JohannaKarlsson, MargaretaThorn, HansLindroth, MargarethaHolmgren Peterson, KajsaMagnusson, Karl-EricStrålfors, Peter
By organisation
Cell biologyFaculty of Health SciencesMedical Microbiology
In the same journal
The FASEB Journal
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 274 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf