liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Dynorphin mRNA-expressing neurons in the rat paraventricular hypothalamic nucleus project to the spinal cord
Linköping University, Department of Biomedicine and Surgery, Cell biology. Linköping University, Faculty of Health Sciences.
2000 (English)In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 285, no 3, 161-164 p.Article in journal (Refereed) Published
Abstract [en]

The opioid peptide dynorphin is important for the regulation of neuronal activity in the spinal cord. Because dynorphin is produced by neurons throughout the neuraxis, there are many putative sources for spinal dynorphin fibers, in addition to those originating from spinal cord neurons. Using a sensitive double-labeling technique combining in situ hybridization and tract tracing, the present study demonstrates that the paraventricular hypothalamic nucleus (PVH) of adult naı̈ve male Sprague–Dawley rats contains large numbers of dynorphin mRNA-producing cells with projections to the spinal cord. Thus, more than 40% of the spinally projecting neurons in PVH were found to express dynorphin mRNA. This novel finding suggests that the PVH is a major source of spinal dynorphin that may be of importance for the processing of pain and visceral information.

Place, publisher, year, edition, pages
2000. Vol. 285, no 3, 161-164 p.
Keyword [en]
Preprodynorphin, Paraventricular hypothalamic nucleus, In situ hybridization, Retrograde labeling, Parvocellular, Descending
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-25043DOI: 10.1016/S0304-3940(00)01093-4Local ID: 9469OAI: diva2:245369
Available from: 2009-10-07 Created: 2009-10-07 Last updated: 2012-08-08
In thesis
1. Peptidergic projections from the rat paraventricular hypothalamic nucleus to the spinal cord
Open this publication in new window or tab >>Peptidergic projections from the rat paraventricular hypothalamic nucleus to the spinal cord
2000 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The survival of the organism is dependent on keeping a balanced internal milieu in an ever-changing environment The process to achieve this balance is called homeostasis and it is accomplished by the consonant action of the endocrine system and the autonomic nervous system. Specific parts of the central nervous system (CNS) control these systems in response to various sensory inputs. One of the key sites for the coordinated action of these two homeostasis systems is the paraventricular hypothalamic nucleus (PVH). Tirrough its projections to the pituitary the PVH controls the release of different hormones. In addition, it projects heavily to brain stem and spinal cord autonomic centers. Furthermore, the PVH projects to the superficial layers of the spinal cord, where nerve fibers conveying pain and temperature modalities terminate. Thus, in addition to its motor control of the homeostasis system, the PVH may influence the processing of sensory inputs that are important for homeostatic regulation. The aim of this thesis was to investigate some aspects of the organization and function of the neuronal pathways projecting from the PVH to the spinal cord in the rat.

Vasopressin, which is a peptide that is synthesized by PVH neurons, has been proposed to regulate several different processes in the spinal cord. However, the source of vasopressin fibers within the spinal cord has been a matter of some dispute. Thus, firstly, we investigated the distribution of neurons expressing vasopressin mRNA in the naive rat, thereby providing the first complete screening of the CNS for this neuropeptide at the mRNA level. The results confmn some earlier work, but also demonstrate several new sites of vasopressin mRNA synthesis. Some sites previously thought to produce vasopressin displayed no vasopressin mRNA. Our results show that the PVH is the only putative site of spinally-projecting vasopressin neurons in the naive rat Hence, all functions exerted by vasopressin in the spinal cord are likely to be controlled by the PVH.

Secondly, we examined the neurochemical profile of the PVH neurons that project to the spinal cord. We show that 41% of these neurons express dynorphin mRNA, 20% express enkephalin mRNA, 38% express oxytocin mRNA, and 42% express vasopressin mRNA. This is the first time that dynorphin has been shown in PVH neurons with spinal projections, and the figures for the other peptides are substantially higher than what has been reported in previous shldies. In addition, we demonstrate that each of the spinal cord projecting subdivisions of the PVH displays distinct peptide expression patterns.

Thirdly, we investigated the physiological effect of the PVH on nociceptive transmission in the spinal cord dorsal horn. However, with the present experimental approach we could not show a consistent effect of PVH stimulation on nociceptive neurons in the spinal dorsal horn. The varying results we achieved are ascribed to the functional heterogeneity of the PVH as revealed by our previous studies.

The present data contribute to the nnderstanding of the complex organization of the PVH. The parcellation of peptide-expressing neurons into distinct spinal cord projecting subnuclei is likely to reflect distinct functional roles of these subnuclei, and may provide the anatomical basis for the ability of the PVH to control many different processes in the spinal cord The nnderstanding of the physiological profile of these different subnuclei will provide insight into the control of homeostasis.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2000. 52 p.
Linköping University Medical Dissertations, ISSN 0345-0082 ; 627
National Category
Medical and Health Sciences
urn:nbn:se:liu:diva-25654 (URN)10030 (Local ID)91-7219-584-3 (ISBN)10030 (Archive number)10030 (OAI)
Public defence
2000-05-12, Berzeliussalen, Hälsouniversitetet, Linköping, 13:00 (Swedish)
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2012-12-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hallbeck, Martin
By organisation
Cell biologyFaculty of Health Sciences
In the same journal
Neuroscience Letters
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 41 hits
ReferencesLink to record
Permanent link

Direct link