liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tumour necrosis factor-α potentiates CR3-induced respiratory burst by activating p38 MAP kinase in human neutrophils
Linköping University, Department of Molecular and Clinical Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Molecular and Clinical Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Molecular and Clinical Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Molecular and Clinical Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
2001 (English)In: Immunology, ISSN 0019-2805, E-ISSN 1365-2567, Vol. 103, no 4, 465-472 p.Article in journal (Refereed) Published
Abstract [en]

CR3 and FcγRs are the main receptors involved in the phagocytic process leading to engulfment and killing of microbes by production of reactive oxygen intermediates (ROI) and degranulation. Various inflammatory mediators, such as tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS), are known to prime neutrophils leading to increased bactericidal responses, but the underlying mechanism of priming has only been partially elucidated. The purpose of this study was to investigate how TNF-α primes neutrophils for subsequent stimuli via either CR3 or FcγR. The receptors were specifically activated with pansorbins (protein-A-positive Staphylococcus aureus) coated with anti-CR3, anti-FcγRIIa, or anti-FcγRIIIb monoclonal antibody. Activation of neutrophils with these particles resulted in ROI production as measured by chemiluminescence. Anti-CR3 pansorbins induced the most prominent ROI production in neutrophils. TNF-α potentiated the CR3-mediated respiratory burst but had little effect on that mediated by FcγRs. The priming effect of TNF-α on CR3-mediated ROI production is associated with an increased activation of p38 MAPK as well as tyrosine phosphorylation of p72syk. Pretreatment of neutrophils with the inhibitors for p38 MAPK and p72syk markedly suppressed the respiratory burst induced by CR3. Furthermore, TNF-α induced about a three-fold increase in the expression of CR3 in neutrophils, an effect which is blocked by the p38 MAPK inhibitor. Taken together, these results showed that TNF-α potentiates the CR3-mediated respiratory burst in neutrophils not only by triggering a p38 MAPK-dependent up-regulation of CD11b/CD18 but also by modulating the signalling pathways.

Place, publisher, year, edition, pages
2001. Vol. 103, no 4, 465-472 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-25910DOI: 10.1046/j.1365-2567.2001.01270.xLocal ID: 10352OAI: oai:DiVA.org:liu-25910DiVA: diva2:246458
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2012-10-09Bibliographically approved
In thesis
1. Signal transduction in human phagocytic cells during phagocytosis, oxidative activation and apoptosis
Open this publication in new window or tab >>Signal transduction in human phagocytic cells during phagocytosis, oxidative activation and apoptosis
2003 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Neutrophils and macrophages are professional phagocytic cells that play a crucial role in host defense against invading microorganisms. They bind to, internalize, and subsequently kill microbes with an arsenal of reactive oxygen metabolites and microbicidal agents. The microbes are recognized by cell surface receptors, mainly by the phagocytic receptors FcγR and complement receptor 3 (CR3) that recognize IgG and complement fragments C3b/C3bi, respectively. Microbial pathogens such as Salmonella typhimurium have developed sophisticated mechanisms to avoid the host defense system and enter the cells by invasion, mediated by a type III secretion system.

The objective of this thesis was to investigate the signaling pathways during receptor-mediated phagocytosis by FcγRIIa, FcγRIIIb and complement receptor 3 (CR3), or during invasion by Salmonella typhimurium in human phagocytic cells. We have focused on the intracellular signaling pathways controlling phagocytosis, production of reactive oxygen metabolites, and apoptosis. Paper I-III focus on signal transduction events triggered after ligation of CR3, FcγRIIa, and FcγRIIIb in human neutrophils. Both activation of CR3 and FcγR induced production of reactive oxygen metabolites (ROM), where CR3 induced the most prominent response. The ROM production was dependent on intracellular Ca2+, tyrosine kinase activation, and phospholipase D (PLD) activity. FcγRIIa induced a strong phosphorylation Syk, which was less pronounced following FcγRIIIb ligation, and absent after CR3 activation. Our data indicate that CR3 and FcγR activate different signaling pathways. By exposing neutrophils to TNF-α prior to ligation of CR3, the oxidative response was strongly enhanced, whereas the response to FcγR-ligation was unaffected. This increase was in part due to a p38 MAPK-dependent upregulation of CR3 on the cell surface, but also due to modulation of intracellular signaling pathways since Syk was activated by CR3 as well as FcγR in TNF-α treated cells. In contrast to macrophages where only FcγR activates Rac, Cdc42, and the subsequent ROM production, we show that CR3 as well as FcγR activate the GTPases Rac2 and Cdc42 in human neutrophils. Their downstream target p21 activated kinase was also activated, and Rac2 translocated to the membrane fraction. Correct function of these small GTP-binding proteins was necessary for generating a proper signal for ROM production in these cells.

One survival strategy exploited by microbial pathogens might be to induce apoptosis of tbe host. Invasive Salmonella typhimurium efficiently entered U937 cells and induced a pronounced degree of apoptosis in contrast to its opsonized mutants, which were internalized by receptor-mediated phagocytosis but failed to induce apoptosis. Invasion by Salmonella typhimurium activated Rac1 and Cdc42 independently of PI3 K and tyrosine kinase activation. Inhibition of Racl and Cdc42 inhibited both invasion and the induction of apoptosis. Receptor-mediated phagocytosis activated the survival signals Akt/PKB which protected the cells from apoptosis. Thus, control of apoptosis is a fine tuned balance between pro- and anti-apoptotic signaling proteins.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2003. 58 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 789
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-26651 (URN)11216 (Local ID)91-7373-548-5 (ISBN)11216 (Archive number)11216 (OAI)
Public defence
2003-05-09, Berzeliussalen, Hälsouniversitetet, Linköping, 13:00 (Swedish)
Opponent
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2012-10-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Forsberg, MariaZheng, LiminStendahl, Olle

Search in DiVA

By author/editor
Forsberg, MariaZheng, LiminStendahl, Olle
By organisation
Medical MicrobiologyFaculty of Health Sciences
In the same journal
Immunology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf