liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organelles in human neutrophils
Linköping University, Department of Molecular and Clinical Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Molecular and Clinical Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Molecular and Clinical Medicine, Medical Microbiology. Linköping University, Faculty of Health Sciences.
2002 (English)In: Journal of Cell Science, ISSN 0021-9533, E-ISSN 1477-9137, Vol. 115, no 6, 1321-1330 p.Article in journal (Refereed) Published
Abstract [en]

Biogenesis of phagolysosomes proceeds through a sequential series of interactions with endocytic organelles, a process known to be regulated by Rab and SNARE proteins. The molecular mechanisms underlying phagosome maturation in neutrophils are, however, not clearly understood. We investigated fusion between phagosomes containing the intracellular pathogen Mycobacterium tuberculosis versus the extracellular pathogen Staphylococcus aureus (designated MCP for mycobacteria-containing phagosome and SCP for S. aureus-containing phagosome) and cytoplasmic compartments in human neutrophils. Western blot analysis of phagosomes isolated after internalisation revealed that lactoferrin (a constituent of secondary granules) and LAMP-1 were incorporated into both SCP and MCP, whereas hck (marker of azurophil granules) interacted solely with SCP. The subcellular distribution of the proteins Rab5a and syntaxin-4 suggested a role in docking of granules and/or endosomes to the target membrane in the neutrophil. We observed that during phagocytosis, Rab5a in GTP-bound form interacted with syntaxin-4 on the membrane of MCP and were retained for up to 90 minutes, whereas the complex was recruited to the SCP within 5 minutes but was selectively depleted from these vacuoles after 30 minutes of phagocytosis. Downregulation of Rab5a by antisense oligonucleotides efficiently reduced the synthesis of Rab5a, the binding of syntaxin-4 to MCP and SCP and the capacity for fusion exhibited by the pathogen-containing phagosomes, but it had no effect on bacteria internalisation. These data indicate that the difference in granule fusion is correlated with a difference in the association of Rab5a and syntaxin-4 with the phagosomes. Intracellular pathogen-containing phagosomes retain Rab5a and syntaxin-4, whereas extracellular pathogen-containing phagosomes bind briefly to this complex. These results also identified Rab5a as a key regulator of phagolysosome maturation in human neutrophils.

Place, publisher, year, edition, pages
2002. Vol. 115, no 6, 1321-1330 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-26512Local ID: 11069OAI: oai:DiVA.org:liu-26512DiVA: diva2:247061
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Interaction Between Mycobacterium tuberculosis and Human Neutrophils
Open this publication in new window or tab >>Interaction Between Mycobacterium tuberculosis and Human Neutrophils
2001 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Mycobacterium tuberculosis, the etiologic agent of tuberculosis, is responsible for more deaths each year than any other single pathogen. Mononuclear phagocytes and T cells are crucially involved in the control and local containment of this infection. Less is known about the contribution of neutrophils to control tuberculosis. As one of the most efficient phagocytic cells of the immune system, neutrophils restrict the initial, local replication of numerous pathogens and thereby delay their systemic spread. Neutrophils immigrate quickly to the site of mycobacterial entry and are found in granulomas after infection with M. tuberculosis. The aims of this study were to investigate how neutrophils control M. tuberculosis in the acute phase of mycobacterial infection and the signaling pathways regulating these processes.

When neutrophils are exposed to mycobacteria, they exhibit the typical early bactericidal responses: phagocytosis, generation of reactive oxygen intermediate (ROI), degranulation and the killing of mycobacteria. While production of ROI and M. tuberculosis killing in neutrophils are calcium dependent events, phagocytosis of M. tuberculosis is a calcium-independent process. Measuring intracellular calcium concentration [(Ca+2)]i, revealed that there is no increase in the level of [(Ca+2)]i in single neutrophils upon ingestion of M. tuberculosis. Investigation of the M. tuberculosis-induced phagocytic pathway showed that stimulation of neutrophils by M. tuberculosis triggers tyrosine phosphorylation of PLCγ2 and its association with sch, an adapter protein, and that such association are critical for the M. tuberculosis-stimulated ROI production through activating p38 MAPK. During phagolysosome biogenesis, phagosomes containing M. tuberculosis fused sequentially with secondary granule and late endosomal vacuoles, while delivery of azurophil granule was inhibited. A complex of Rab5a-GTP and syntaxin-4 controlled this fusion process. We suggested that the retention of this complex on the mycobacterial phagosome might allow mycobacteria to avoid the usual physiological destination of phagocytic maturation. Neutrophils infected by M. tuberculosis underwent rapid apoptosis that was mediated by activation of caspase-3 and the expression of Bax and Bcl-x1, two antagonizing members of Bcl-2 family. The level of ROI production controlled this M. tuberculosis induced apoptotic pathway. Apoptotic neutrophils are removed by macrophages, which leads to an augmented mycobactericidal effect in these cells. The results from this work show that neutrophils play an efficient and important role in the early innate immune response against mycobacterial infection, a process that may influence the subsequent specific immune response at the site of infection.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2001. 71 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 679
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-28623 (URN)13779 (Local ID)91-7219-964-4 (ISBN)13779 (Archive number)13779 (OAI)
Public defence
2001-05-31, Berzeliussalen, Universitetssjukhuset, Linköping, 09:00 (Swedish)
Opponent
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2012-09-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Full-text

Authority records BETA

Perskvist, NasrinRoberg, KarinStendahl, Olle

Search in DiVA

By author/editor
Perskvist, NasrinRoberg, KarinStendahl, Olle
By organisation
Medical MicrobiologyFaculty of Health SciencesPathology
In the same journal
Journal of Cell Science
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 94 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf