liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A study and optimization of lumbar spine X-ray imaging systems
Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.ORCID iD: 0000-0003-3352-8330
Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Radio Physics. Östergötlands Läns Landsting, Centre of Surgery and Oncology, Department of Radiation Physics.ORCID iD: 0000-0003-0209-498X
2003 (English)In: British Journal of Radiology, ISSN 0007-1285, E-ISSN 1748-880X, Vol. 76, no 903, 177-188 p.Article in journal (Refereed) Published
Abstract [en]

A Monte Carlo program has been developed that incorporates a voxel phantom of an adult patient in a model of the complete X-ray imaging system, including the anti-scatter grid and screen-film receptor. This allows the realistic estimation of patient dose and the corresponding image (optical density map) for a wide range of equipment configurations. This paper focuses on the application of the program to lumbar spine anteroposterior and lateral screen-film examinations. The program has been applied to study the variation of physical image quality measures and effective dose for changing system parameters such as tube voltage, grid design and screen-film system speed. These variations form the basis for optimization of these system parameters. In our approach to optimization, the best systems are those that can match (or come close to) the calculated image quality measure of systems preferred in a recent European clinical trial, but with lower patient dose. The largest dose savings found were 21% for a 400 speed class system with a grid having a strip density of 40 cm-1 and a grid ratio of 16. A further dose saving of 13% was possible when a 600 speed class system was employed. The best systems found from the optimization correspond to those recommended by the European Commission guidelines on image quality criteria for diagnostic radiographic images.

Place, publisher, year, edition, pages
2003. Vol. 76, no 903, 177-188 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-26766DOI: 10.1259/bjr/52734084Local ID: 11367OAI: oai:DiVA.org:liu-26766DiVA: diva2:247316
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sandborg, MichaelAlm Carlsson, Gudrun

Search in DiVA

By author/editor
Sandborg, MichaelAlm Carlsson, Gudrun
By organisation
Faculty of Health SciencesRadio PhysicsDepartment of Radiation Physics
In the same journal
British Journal of Radiology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf