liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
3-Aminopropanal is a lysosomotropic aldehyde that causes oxidative stress and apoptosis by rupturing lysosomes
Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
2003 (English)In: Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS), ISSN 0903-4641, E-ISSN 1600-0463, Vol. 111, no 6, 643-652 p.Article in journal (Refereed) Published
Abstract [en]

During cerebral ischemia and following trauma, potent cytotoxic polyamine-derived aminoaldehydes form, diffuse, and damage adjacent tissues not directly subjected to the initial insult. One such aldehyde is 3-aminopropanal (3-AP). The mechanisms by which such a small aldehydic compound is excessively cytotoxic have been unclear until recently when we showed that 3-AP, having the structure of a weak lysosomotropic base, concentrates within the acidic vacuolar compartment and causes lysosomal rupture that, in turn, induces caspase activation and apoptotic cell death. Here, using cultured J774 cells and 3-AP as a way to selectively burst lysosomes, we show that moderate lysosomal rupture induces a transient wave of oxidative stress. The start of this oxidative stress period is concomitant with a short period of enhanced mitochondrial membrane potential that later fades and is replaced by a decreased potential before the oxidative stress diminishes. The result of the study suggests that oxidative stress, which has often been described during apoptosis induced by agonists other than oxidative stress per se, may be a consequence of lysosomal rupture with direct and/or indirect effects on mitochondrial respiration and electron transport causing a period of passing enhanced formation of reactive oxygen species.

Place, publisher, year, edition, pages
2003. Vol. 111, no 6, 643-652 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-27708DOI: 10.1034/j.1600-0463.2003.1110607.xLocal ID: 12446OAI: oai:DiVA.org:liu-27708DiVA: diva2:248260
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2012-10-16Bibliographically approved
In thesis
1. Proton trapping in the cellular acidic vacuolar compartment: lysosomal mechanisms in apoptosis/necrosis and iron chelation
Open this publication in new window or tab >>Proton trapping in the cellular acidic vacuolar compartment: lysosomal mechanisms in apoptosis/necrosis and iron chelation
2003 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Under ischemic conditions, a number of cytotoxic metabolic products are formed. Reactive oxygen species are known to be important mediators of progressive ischemic cell injury, and the synergistic damage to cells caused by the combination of such oxygen species and redox-active iron is well appreciated. The acidic interior of lysosome leads to the trapping of substances with high pK4 values. A large variety of molecules, being weak bases, may thus concentrate within this acidic vacuolar compartment, potentially leading to both beneficial and detrimental effects. A major part of the intracellular pool of redoxactive iron is likely to be located in the lysosomal compartment, and iron chelators that are lysosomotropic due to high pK4 values may prove to be important pharmacological tools to protect the brain from oxidative stress. Among a variety of substances formed in the ischemic penumbra zone is the polyamine metabolite, 3-aminopropanal (3-AP), a substance of extreme neurotoxicity. 3-AP is a weak base and may theoretically exert its toxic action through induction of cell death after intralysosomal accumulation.

On the 1774 mouse histiocytic lymphoma cell line, we used the common lysosomotropic agent NH3 to increase lysosomal pH, the lysosomotropic iron chelator, 5-[1,2] dithiolan-3-yl-pentanoic acid (2-dimethylamino-ethyl)-amide (LAP) and the lysosomotropic iron binder, WR-1065, a metabolite of amifostine, as tools to determine that proton trapping within the lysosomal acidic vacuolar compartment plays an important role in oxidative stress-induced apoptosis. We also used another lysosomotropic agent, 3-AP, on the J774 cell line and on the SH-SY5Y human neuroblastoma cell line. The results indicate that proton trapping of this toxin within the lysosome might explain its toxicity to cells.

Sulfide-silver cytochemical detection of iron revealed a pronounced decrease in the lysosomal content of redox-active iron following reduced acidity of the lysosome, and electron spin-resonance studies showed that no hydroxyl radicals [OH] were formed from hydrogen peroxide under these conditions. This suggests that lysosomes contain most of the free, redox-active iron. In further support of this idea, the lysosomotropic agents LAP and WR-1065 were found to be 5000 and 2500 times more effective, respectively, in protecting cells from oxidative stress, compared with the well-known iron chelator desferrioxamine [DFO]. Evidence was obtained that LAP and WR-1065 exerted their effect on intralysosomal redox-active iron, and that the effect was linked to the acidity of the lysosome. Being weak bases (LAP, pKa = 8.0; WR-1065, pKa = 9.2), these compounds accumulate intralysosomally by proton trapping. The neurotoxic effect of 3-AP (pKa = 9.3) could be linked to a dose-dependent induction of cell death, most likely based on intralysosomal proton trapping of this molecule followed by lysosomal rupture. The lysosomal rupture seems to induce a chain of intracellular events (including generation of oxidative stress), leading to mitochondrial damage directly or indirectly caused by the release of lysosomal proteases.

We conclude that the low pH of the lysosome may both serve to attract basic toxins, such as 3-AP, and promote the accumulation of protective agents, such as LAP and WR-1065. Prevention of lysosomal damage from both oxidants and neurotoxins by lysosomotropic agents has great potential therapeutic utility.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2003. 58 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 808
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-28088 (URN)12854 (Local ID)91-7373-501-9 (ISBN)12854 (Archive number)12854 (OAI)
Public defence
2003-10-09, Patologens föreläsningssal, Universitetssjukhuset, Linköping, 13:15 (Swedish)
Opponent
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2012-10-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Yu, ZhengquanLi, WeiBrunk, Ulf

Search in DiVA

By author/editor
Yu, ZhengquanLi, WeiBrunk, Ulf
By organisation
PathologyNeurosurgeryFaculty of Health Sciences
In the same journal
Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS)
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf