liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Apoptotic Death of Inflammatory Cells in Human Atheroma
Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
Department of Pathology, Gade Institute, University of Bergen, Bergen, Norway.
The James Graham Brown Cancer Center, University of Louisville, Louisville, Ky.
Linköping University, Department of Neuroscience and Locomotion, Pathology. Linköping University, Faculty of Health Sciences.
2001 (English)In: Arteriosclerosis, Thrombosis and Vascular Biology, ISSN 1079-5642, E-ISSN 1524-4636, Vol. 21, no 7, 1124-1130 p.Article in journal (Refereed) Published
Abstract [en]

Although the accumulation of cholesterol and other lipidic material is unquestionably important in atherogenesis, the reasons why this material progressively accumulates, rather than being effectively cleared by phagocytic cells such as macrophages, are not completely understood. We hypothesize that atheromatous lesions may represent "death zones" that contain toxic materials such as oxysterols and in which monocytes/macrophages become dysfunctional and apoptotic. Indeed, cathepsins B and L, normally confined to the lysosomal compartment, are present in the cytoplasm and nuclei of apoptotic (caspase-3-positive) macrophages within human atheroma. The possible involvement of oxysterols is suggested by experiments in which cultured U937 and THP-1 cells exposed to 7-oxysterols similarly undergo marked lysosomal destabilization, caspase-3 activation, and apoptosis. Like macrophages within atheroma, intralysosomal cathepsins B and L are normally present in the cytoplasm and nuclei of these oxysterol-exposed cells. Lysosomal destabilization, cathepsin release, and apoptosis may be causally related, because inhibitors of cathepsins B and L suppress oxysterol-induced apoptosis. Thus, toxic materials such as 7-oxysterols in atheroma may impair the clearance of cholesterol and other lipidic material by fostering the apoptotic death of phagocytic cells, thereby contributing to further development of atherosclerotic lesions.

Place, publisher, year, edition, pages
2001. Vol. 21, no 7, 1124-1130 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-27724DOI: 10.1161/​hq0701.092145Local ID: 12463OAI: oai:DiVA.org:liu-27724DiVA: diva2:248276
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2012-08-16Bibliographically approved
In thesis
1. Oxidized Lipids and Lysosomal Pathology in Atherogenesis
Open this publication in new window or tab >>Oxidized Lipids and Lysosomal Pathology in Atherogenesis
2000 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Macrophages take up large amount of exogenous materials such as oxidatively modified low-density lipoproteins (oxLDL) and lysosomotropic agents. OxLDL is taken up into macrophage lysosomes through receptor-mediated endocytosis, but poorly degraded, resulting in foam cell formation. Cholesterol oxidation products, major toxic components of oxLDL, are involved in foam cell formation and the initiation of atherosclerosis. The production of ROS/RNS, cytokines, and matrix proteases by macrophages and the apoptosis of arterial cells may contribute to atherosclerotic plaque development and destabilization.

We had four objectives in this study, first we study the influence of oxLDL on lysosomal membrane stability, location and activity of lysosomal enzymes, macrophage cell death, and the modulation of these cellular characteristics by high-density lipoprotein (HDL), vitantin E (vit E), and the iron chelator desferrioximine (DFO) or iron complex. Second, we examined the role of lysosomal enzymes in macrophage apoptosis induced by oxysterols, the major cytotoxic components of oxLDL. Third, we analyzed the expression of cysteine protease cathepsins B and L and studied their relationship to macrophage apoptosis in human atherosclerotic lesions. And fourth, we investigated whether lysosomal rupture and release of lysosomal enzymes could initiate apoptosis using the lysosomotropic detergent MSDH.

The results suggest that oxLDL causes lysosomal destabilization and relocation of lysos'omal enzymes as indicated by increased cytosolic NABGase, cathepsin-L, and cathepsin D, and decreased lysosomal acridine orange (AO)-induced red fluorescence. AcLDL had no cytotoxic effects on the cells and their lysosomes. HDL, vit E, and the iron chelator DFO diminished the cytotoxicity of oxLDL by decreasing lysosomal damage, while the iron complex enhanced oxLDL cytotoxicity. Macrophage apoptosis induced by ChOx and 7-oxysterols (7B-OH and 7- keto) is associated with lysosomal rupture and release of lysosomal enzymes to the cytosol. The lysosomal punctuated immune-granularity of cathepsins B and L was decreased in 7 -oxysteroltreated cells compared to control cells. Moreover, there is enhancement and dispersion of cathepsins B and L immunoreactivity throughout 7-oxysterols-treated cells and an extensive immunoreaction in the nuclei and around nuclear areas of apoptotic cells. Using MSDH, a lysosomotropic detergent, we further demonstrated that lysosomal rupture and release of lytic enzymes indeed play an initial role in macrophage apoptosis.

There is a lesion dependent eo-expression of cathepsins B and Land caspase-3 in early and advanced human atherosclerotic lesions, which is associated with macrophage apoptosis.

We conclude that macrophage cell death including apoptosis induced by oxLDL and oxysterols is associated with lysosomal rupture and relocation of lysosomal hydrolytic enzymes to the cytosol. The released enzymes may initiate ceU death by activating the caspase cascade, attacking mitochondria, or directly attacking the nuclear of the cells. The high eo-expression of cathepsins B and L with caspase-3 in apoptotic macrophages in human atheroma lesions suggests that macrophage apoptosis and related hydrolytic enzymes may play an important role in lesion development and plaque instability.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2000. 56 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 652
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-28056 (URN)12819 (Local ID)91-7219-753-6 (ISBN)12819 (Archive number)12819 (OAI)
Public defence
2000-12-01, Berzeliussalen, Universitetssjukhuset, Linköping, 13:00 (Swedish)
Opponent
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2012-08-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Li, WeiEaton, John WallaceYuan, Xi Ming

Search in DiVA

By author/editor
Li, WeiEaton, John WallaceYuan, Xi Ming
By organisation
PathologyFaculty of Health Sciences
In the same journal
Arteriosclerosis, Thrombosis and Vascular Biology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 57 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf