liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Distribution of ferritin and redox-active transition metals in normal and cataractous human lenses
Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Pathology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
Show others and affiliations
2000 (English)In: Experimental Eye Research, ISSN 0014-4835, Vol. 71, no 6, 599-607 p.Article in journal (Refereed) Published
Abstract [en]

Previous studies have shown that lenticular levels of Fe and Cu are elevated in age-related cataract. However, it is not known if these metals are present in a state that is permissive for redox reactions that may lead to the formation of free radicals. In addition, there is little data available concerning the concentration and lenticular distribution of ferritin, the major intracellular Fe-sequestering protein, in the lens. The aim of the present work was therefore to determine the distribution of ferritin and the redox-availability of Fe and Cu in healthy and cataractous lenses. Lens ferritin distribution was assessed by ELISA and immunohistochemistry. A modified ELISA detected ferritin in an 'insoluble' lens protein fraction. Ferritin levels were not significantly different in the cortex vs nucleus of healthy lenses. In contrast, ferritin levels in the cataractous lens nuclei appeared to be 70 % lower compared to the cortex. This was at least partially due to the presence of ferritin within an insoluble protein fraction of the homogenized lenses. In normal lenses, ferritin staining was most intense in the epithelium, with diffuse staining observed throughout the cortex and nucleus. The redox-availability of lenticular metals was determined using: (1) autometallography, (2) Ferene-S as a chromogenic Fe chelator, and (3) NO release from nitrosocysteine to probe for redox-active Cu. The antometallography studies showed that the cataractous lenses stained more heavily for redox-active metals in both the nucleus and cortex when compared to age-matched control lenses. Chelatable Fe was detected in homogenized control lenses after incubation with Ferene-S, with almost three-fold higher levels detected in the cataractous lenses on average. The Cu-catalysed liberation of NO from added nitrosocysteine was not demonstrated in any lens sample. When exogenous Cu (50 nM) was added to the lenses, it was rapidly chelated. The cataractous samples were approximately twice as effective at redox-inactivation of added Cu. These studies provide evidence that a chelatable pool of potentially redox-active Fe is present at increased concentrations in human cataractous lenses. In contrast, it seems that lenticular Cu may not be readily available for participation in redox reactions. (C) 2000 Academic Press.

Place, publisher, year, edition, pages
2000. Vol. 71, no 6, 599-607 p.
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-27926DOI: 10.1006/exer.2000.0912Local ID: 12687OAI: diva2:248478
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2011-01-14

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Roberg, Karin
By organisation
Faculty of Health SciencesPathologyDepartment of Clinical Pathology and Clinical Genetics
In the same journal
Experimental Eye Research
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 44 hits
ReferencesLink to record
Permanent link

Direct link