liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Kernel density estimators for hue based image retrieval
Ericsson Vietnam, Daeha Business Center, Hanoi, Vietnam.
Linköping University, Department of Science and Technology, Digital Media. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-7557-4904
2005 (English)In: Journal of Imaging Science And Technology, ISSN 8750-9237, Vol. 49, no 2, 185-188 p.Article in journal (Refereed) Published
Abstract [en]

Color is widely used for content-based image retrieval. In these applications the color properties of an image are characterized by the probability distribution of the colors in the image. These probability distributions are very often estimated by histograms although the histograms have many drawbacks compared to other estimators such as kernel density methods. In this article we investigate whether using kernel density estimators instead of histograms could give better retrieval results based on hue descriptors of color images. In this article we introduce the Fourier series coefficients as descriptors of hue distributions. We argue that under certain conditions these coefficients are optimal in a least squared error sense. We will also apply Parseval formula to compute the similarity of two distributions directly from these Fourier coefficients. Our experiments show that this modification of the kernel based similarity estimation has better retrieval performance than the histogram methods and we will also show that the method is insensitive to parameter changes as long as they are selected in a reasonable range. © 2005, IS&T - The Society for Imaging Science and Technology.

Place, publisher, year, edition, pages
2005. Vol. 49, no 2, 185-188 p.
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-28172Local ID: 12988OAI: diva2:248723
Available from: 2009-10-08 Created: 2009-10-08 Last updated: 2016-08-31

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Lenz, Reiner
By organisation
Digital MediaThe Institute of Technology
In the same journal
Journal of Imaging Science And Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 140 hits
ReferencesLink to record
Permanent link

Direct link