liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temperature sensitivity indicates enzyme controlled chlorination of soil organic matter
Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.ORCID iD: 0000-0002-6471-143X
Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
Linköping University, The Tema Institute, Department of Water and Environmental Studies. Linköping University, Faculty of Arts and Sciences.
Show others and affiliations
2009 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 43, no 10, 3569-3573 p.Article in journal (Refereed) Published
Abstract [en]

Old assumptions that chloride is inert and that most chlorinated organic matter in soils is anthropogenic have been challenged by findings of naturally formed organochlorines. Such natural chlorination has been recognized for several decades, but there are still very few measurements of chlorination rates or estimates of the quantitative importance of terrestrial chlorine transformations. While much is known about the formation of specific compounds, bulk chlorination remains poorly understood in terms of mechanisms and effects of environmental factors. We quantified bulk chlorination rates in coniferous forest soil using 36Cl-chloride in tracer experiments at different temperatures and with and without molecular oxygen (O2). Chlorination was enhanced by the presence of O2 and had a temperature optimum at 20 °C. Minimum rates were found at high temperatures (50 °C) or under anoxic conditions. The results indicate (1) that most of the chlorination between 4 and 40 °C was biotic and driven by O2 dependent enzymes, and (2) that there is also slower background chlorination occurring under anoxic conditions at 20 °C and under oxic conditions at 50 °C. Hence, while oxic and biotic chlorination clearly dominated, chlorination by other processes including possible abiotic reactions was also detected.

Place, publisher, year, edition, pages
2009. Vol. 43, no 10, 3569-3573 p.
Keyword [en]
organik material, soil, chlorine
National Category
Ecology Geochemistry
Identifiers
URN: urn:nbn:se:liu:diva-28206DOI: 10.1021/es8035779OAI: oai:DiVA.org:liu-28206DiVA: diva2:248889
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2013-12-17

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Bastviken, DavidSvensson, TeresiaKarlsson, SusanneSandén, Per

Search in DiVA

By author/editor
Bastviken, DavidSvensson, TeresiaKarlsson, SusanneSandén, Per
By organisation
Department of Water and Environmental StudiesFaculty of Arts and Sciences
In the same journal
Environmental Science and Technology
EcologyGeochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 528 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf