liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Correlation between bonding structure and microstructure in fullerenelike carbon nitride thin films
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, Dresden.
Instituto de Ciencia y Tecnología de Polímeros, Madrid.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, Dresden.
Show others and affiliations
2005 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 71, no 12, 125414- p.Article in journal (Refereed) Published
Abstract [en]

The bonding structure of highly ordered fullerenelike (FL) carbon nitride (CNx) thin films has been assessed by x-ray absorption near-edge spectroscopy (XANES). Samples with different degrees of FL character have been analyzed to discern spectral signatures related to the FL microstructure. The XANES spectra of FL-CNx films resemble that of graphitic CN x, evidencing the sp2 hybridization of both C and N atoms. The FL structure is achieved with the promotion of N in threefold positions over pyridinelike and cyanidelike bonding environments. In addition, the relative p* / σ* XANES intensity ratio at the C(1s) edge is independent of the FL character, while it decreases ∼40% at the N(1s) edge with the formation of FL arrangements. This result indicates that there is no appreciable introduction of C-sp3 hybrids with the development of FL structures and, additionally, that a different spatial localization of π electrons at C and N sites takes place in curved graphitic structures. The latter has implications for the elastic properties of graphene sheets and could, as such, explain the outstanding elastic properties of FL-CNx.

Place, publisher, year, edition, pages
2005. Vol. 71, no 12, 125414- p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-28408DOI: 10.1103/PhysRevB.71.125414Local ID: 13544OAI: oai:DiVA.org:liu-28408DiVA: diva2:249214
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Neidhardt, JörgHultman, Lars

Search in DiVA

By author/editor
Neidhardt, JörgHultman, Lars
By organisation
Thin Film PhysicsThe Institute of Technology
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 205 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf