liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Medical knowledge extraction: application of data analysis methods to support clinical decisions
Linköping University, Department of Biomedical Engineering, Medical Informatics. Linköping University, The Institute of Technology.
1993 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In building computer based clinical decision support extensive data analysis is sought to acquire all the medical knowledge needed to formulate the decision rules.

This study explores, compares and discusses several approaches to knowledge extraction from medical data. Statistical methods (univariate, multivariate), probabilistic artificial intelligence approaches (inductive learning procedures, neural networks) and the rough sets were used for this purpose. The methods were applied in two clinical sets of data with well defined patients groups.

The aim of the study was then to use different data analytical methods and extract knowledge, both of semantic and classification nature, enabling to differentiate among patients, observations and disease groups, what in turn was aimed to support clinical decisions.

Semantic analysis was performed in two ways. In prior analysis subgroups or patterns were formed based on the distance within the data, while in posterior semantic analysis 'types' of observation falling into various groups and their measured values were explored.

To study further discrimination, two empirical systems, based on principles of learning from examples, i.e. based on Quintan's ID3 algorithm (the AssPro system) and CART (Classification and Regression Trees), were compared. The knowledge representation in both systems is tree structured, thus the comparison is made according to the complexity, accuracy and structure of their optimal decision trees. The inductive learning system was additionaly compared and evaluated in relation to the location model of discriminant analysis, the linear Ficherian discrimination and the rough sets.

All methods used were analysed and compared for their theoretical and applicative performances, and in some cases they were assessed medical appropriateness. By using them for the extensive knowledge extraction, it was possible to give a strong methodological basis for design of clinical decision support systems specific for the problem and the medical environments considered.

Place, publisher, year, edition, pages
Linköping: LJ Foto & Montage , 1993. , 42 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 322
Keyword [en]
knowledge extraction, multivariate statistics, inductive learning, rough sets, non-specified liver diseases, decision support
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-29462Local ID: 14810ISBN: 91-7871-177-0OAI: diva2:250277
Public defence
1993-11-19, Aulan, Administrationsbyggnaden, Universitetssjukhuset, Linköping, 13:00 (Swedish)

Papers, included in the Ph.D. thesis, are not registered and included in the posts from 1999 and backwards.

Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2013-01-15

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Babic, Ankica
By organisation
Medical InformaticsThe Institute of Technology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 580 hits
ReferencesLink to record
Permanent link

Direct link