liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Arrhenius-type temperature dependence of the chemical desorption processes active during deposition of fullerene-like carbon nitride thin films
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.ORCID iD: 0000-0002-2837-3656
2004 (English)In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 569, no 1-3Article in journal (Refereed) Published
Abstract [en]

The chemical desorption of carbon and nitrogen-containing species from the growth surface was investigated for the deposition of fullerene-like carbon nitride (FL CNx) thin solid films by reactive magnetron sputtering of a carbon target in a N2-containing atmosphere. The desorption of mainly C2N2 was suppressed by decreasing the substrate temperature for various N2 fractions in the discharge stepwise from 873 K down to cryogenic temperatures of 153 K. This approach enabled us to quantify the film-forming flux by determining the carbon and nitrogen incorporation rates by elastic recoil detection. The incorporation of both, carbon and nitrogen, was found to increase substantially at lower substrate temperatures, whereas this effect is most pronounced for the higher N 2 fractions. In turn, a modified Arrhenius-type rate equation was applied to extrapolate the total flux of the elements as well as their respective activation energies of desorption for the series at higher N 2 fractions. The reasonable fit indicates that the desorption process is mainly determined by the surface diffusion rate of adsorbed C xNy species as well as their structure and total number. The extrapolated fluxes of carbon and nitrogen atoms arriving as preformed species at the growth surface scaled strongly with the availability of N 2 in the discharge, while the obtained activation energies of 0.05-0.17 eV point towards a saturation of the process at elevated temperatures. Furthermore, the constant C/N ratio found in the film-forming flux leads to the notion that most of the nitrogen incorporated originates from preformed species instead of N atoms or ions. The FL structure evolution has to be seen as a sensitive interplay between the type and magnitude of preformed C xNy species in the deposition flux and the selectiveness of the preferential etching by means of the chemical desorption. © 2004 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
2004. Vol. 569, no 1-3
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-29685DOI: 10.1016/j.susc.2004.07.025Local ID: 15072OAI: oai:DiVA.org:liu-29685DiVA: diva2:250502
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Neidhardt, JörgHögberg, HansHultman, Lars

Search in DiVA

By author/editor
Neidhardt, JörgHögberg, HansHultman, Lars
By organisation
The Institute of TechnologyThin Film Physics
In the same journal
Surface Science
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf