liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental radiofrequency brain lesions: a volumetric study
Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
Linköping University, Department of Neuroscience and Locomotion, Neurosurgery. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Medicine and Care, Radiation Physics. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0001-8661-2232
Linköping University, Department of Medicine and Care, Radiology. Linköping University, Faculty of Health Sciences.
Show others and affiliations
2002 (English)In: Neurosurgery, ISSN 0148-396X, E-ISSN 1524-4040, Vol. 51, no 3, 781-788 p.Article in journal (Refereed) Published
Abstract [en]

OBJECTIVE : This study describes the production, under strictly standardized and controlled conditions, of radiofrequency lesions with identical neurogenerator settings: in vitro in two different albumin solutions (nongelatinous and gelatinous) and in vivo in the thalamus of the pig.

METHODS : The radiofrequency lesions were investigated in vitro by the use of a specially designed video system and in vivo by magnetic resonance imaging. Moreover, the size of the in vivo lesions was estimated with the use of histological sectioning. The statistical analysis included the calculation of a correlation coefficient for the length, width, and volume for each lesion estimation.

RESULTS : A high correlation (R = 0.96, P < 0.005; n = 14) was found between clot sizes in the two albumin solutions. Albumin clots generated in gelatinous albumin showed systematically larger volumes. In the pig, two concentric zones were seen in all magnetic resonance images and all histological preparations. The width correlation of the completely coagulated brain tissue (inner zones) was R = 0.94, P < 0.005, and n = 7. The corresponding correlation between magnetic resonance images and gelatinous albumin was R = 0.93, P < 0.005, and n = 7. As a rule, the in vitro clots were smaller than the outer zone but larger than the inner zone of the magnetic resonance imaging-recorded lesions for all of the electrode and temperature combinations tested. In vivo lesions generated with the same electrode and parameter settings showed high reproducibility.

CONCLUSION : The value of presurgical electrode tests to validate the electrode function and lesion size in vitro has become evident in this study, which shows a high correlation between the in vitro albumin clots and the in vivo lesions observed on magnetic resonance images.

Place, publisher, year, edition, pages
2002. Vol. 51, no 3, 781-788 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-29944DOI: 10.1097/00006123-200209000-00030Local ID: 15370OAI: oai:DiVA.org:liu-29944DiVA: diva2:250763
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2017-12-13
In thesis
1. Characterisation and modelling of radio-frequency lesioning in functional neurosurgery
Open this publication in new window or tab >>Characterisation and modelling of radio-frequency lesioning in functional neurosurgery
2001 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on the characterisation and modelling of the radio frequency (RF) lesioning with emphasis on size estimation in functional neurosurgery. A computer-assisted video system has been set up for standardised test and documentation of protein clots generated by RF-lesioning electrodes in an albumin solution. A standardised test is essential in comparing assessed results of the size and shape of protein clots generated using different parameters. This is beneficial to both the manufacturer oflesioning electrodes as well as the surgeon.

In an animal study, performed analogously to thalamotomy in man, the correlation in size between in vitro protein clots and in vivo lesions has been investigated. The result shows a high correlation between protein clots and lesions observed on MR images; and lesions observed on MR images and corresponding coagulated tissue in histological sectionings. This actualises the value of presurgical electrode tests to validate the electrode function and lesion size in vitro.

A finite element model has been set-up in order to facilitate studies of the growth and the temperature distribution during the lesioning process. Of the utmost importance is the finding of a difference in temperature between maximum temperature, located outside the electrode, compared to the intra-electrode (thermocouple) temperature.

A method for real time monitoring of lesion growth and estimation of lesion size utilising static and/or Doppler broadened laser light is proposed. Implemented in a surgical-assist system, this could give valuable guidance to the surgeon as to whether the desired lesion size is obtained or not and keep the destruction precise, but to a minimum.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2001. 70 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 693
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-29440 (URN)14786 (Local ID)91-7373-033-5 (ISBN)14786 (Archive number)14786 (OAI)
Public defence
2001-06-01, Elsa Brändströmssalen, Universitetssjukhuset, Linköping, 09:15 (Swedish)
Opponent
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2013-02-26

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Eriksson, OlaLundberg, PeterLindström, SivertWårdell, Karin

Search in DiVA

By author/editor
Eriksson, OlaLundberg, PeterLindström, SivertWårdell, Karin
By organisation
Biomedical InstrumentationThe Institute of TechnologyNeurosurgeryFaculty of Health SciencesRadiation PhysicsRadiologyCell biology
In the same journal
Neurosurgery
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 587 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf