liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In-vitro size estimation of protein clots generated by brain electrodes
Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-0012-7867
1998 (English)In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998 / [ed] H. K. Chang, Y. T. Zhang, Hong Kong: IEEE , 1998, 1783- p.Conference paper, Published paper (Refereed)
Abstract [en]

A method for in-vitro size estimation of protein clots generated by brain electrodes is presented. Radiofrequency generated thermal brain lesions are widely used in functional neurosurgery and in-vitro tests are used to confirm the electrodes' ability to generate lesions. To be able to estimate the size of protein clots generated in-vitro by brain electrodes, a computer-assisted video system was set up. The size estimation is carried out by software using two captured images of the protein clot. The “true” length and width (9.5 mm) of a sphere as measured with a slide-caliper differed at the most 0.5 mm (5%) and 0.3 mm (3%) respectively, all random errors fall within 2s.d

Place, publisher, year, edition, pages
Hong Kong: IEEE , 1998. 1783- p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-31111DOI: 10.1109/IEMBS.1998.746933Local ID: 16842OAI: oai:DiVA.org:liu-31111DiVA: diva2:251934
Conference
The 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October 29 - November 1 1998, Hong Kong SAR, China
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2016-05-04
In thesis
1. Characterisation and modelling of radio-frequency lesioning in functional neurosurgery
Open this publication in new window or tab >>Characterisation and modelling of radio-frequency lesioning in functional neurosurgery
2001 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on the characterisation and modelling of the radio frequency (RF) lesioning with emphasis on size estimation in functional neurosurgery. A computer-assisted video system has been set up for standardised test and documentation of protein clots generated by RF-lesioning electrodes in an albumin solution. A standardised test is essential in comparing assessed results of the size and shape of protein clots generated using different parameters. This is beneficial to both the manufacturer oflesioning electrodes as well as the surgeon.

In an animal study, performed analogously to thalamotomy in man, the correlation in size between in vitro protein clots and in vivo lesions has been investigated. The result shows a high correlation between protein clots and lesions observed on MR images; and lesions observed on MR images and corresponding coagulated tissue in histological sectionings. This actualises the value of presurgical electrode tests to validate the electrode function and lesion size in vitro.

A finite element model has been set-up in order to facilitate studies of the growth and the temperature distribution during the lesioning process. Of the utmost importance is the finding of a difference in temperature between maximum temperature, located outside the electrode, compared to the intra-electrode (thermocouple) temperature.

A method for real time monitoring of lesion growth and estimation of lesion size utilising static and/or Doppler broadened laser light is proposed. Implemented in a surgical-assist system, this could give valuable guidance to the surgeon as to whether the desired lesion size is obtained or not and keep the destruction precise, but to a minimum.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2001. 70 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 693
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-29440 (URN)14786 (Local ID)91-7373-033-5 (ISBN)14786 (Archive number)14786 (OAI)
Public defence
2001-06-01, Elsa Brändströmssalen, Universitetssjukhuset, Linköping, 09:15 (Swedish)
Opponent
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2013-02-26

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Eriksson, OlaWårdell, Karin

Search in DiVA

By author/editor
Eriksson, OlaWårdell, Karin
By organisation
Department of Biomedical EngineeringThe Institute of Technology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 318 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf