liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Some Results on Linear Models of Nonlinear SystemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2003 (English)Licentiate thesis, monograph (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping, Sweden: Linköpings universitet , 2003. , 200 p.
##### Series

Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1046
##### Keyword [en]

System identification, Linear models, Nonlinear systems
##### National Category

Engineering and Technology
##### Identifiers

URN: urn:nbn:se:liu:diva-31708Local ID: 17526ISBN: 91-7373-758-5OAI: oai:DiVA.org:liu-31708DiVA: diva2:252531
##### Presentation

2003-10-20, Sal Visionen, Linköpings universitet, Linköping, 10:15 (Swedish)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2013-11-07

Linear time-invariant approximations of nonlinear systems are used in many a pplications. Such approximations can be obtained in many ways. For example,using system identification and the prediction-error method, it is always possible to estimate a linear model without considering the fact that the input and output measurements in general come from a nonlinear system. The main objective of this thesis is to explain some properties of such estimated models.

More specifically, linear time-invariant models that are optimal approximations in the mean-square error sense are studied. Although this is a classic field of research, relatively few results exist about the properties of such models when they are based on signals from nonlinear systems. In this thesis, some interesting, but in applications usually undesirable, properties of linear approximations of nonlinear systems are pointed out. It is shown that the linear model can be very sensitive to small nonlinearities. Hence, the linear approximation of an almost linear system can be useless for some applications, such as robust control design.

In order to improve the models, conditions are given on the input signal implying various useful properties of the linear approximations. It is shown, for instance, that minimum phase filtered white noise in many senses is a good choice of input signal. Furthermore, some special properties of Gaussian signals are discussed. These signals turn out to be especially useful for approximations of generalized Hammerstein or Wiener systems. Using a Gaussian input, it is possible to estimate the denominator polynomial of the linear part of such a system without compensating for the nonlinearities. In addition, some theoretical results about almost linear systems and about separable input processes are presented. Linear models, both with and without a noise description, are studied.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});