liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Enterocyte cytoskeleton changes are crucial for enhanced translocation of nonpathogenic Escherichia coli across metabolically stressed gut epithelia
Show others and affiliations
2006 (English)In: Infection and Immunity, ISSN 0019-9567, Vol. 74, no 1, 192-201 p.Article in journal (Refereed) Published
Abstract [en]

Substantial data implicate the commensal flora as triggers for the initiation of enteric inflammation or inflammatory disease relapse. We have shown that enteric epithelia under metabolic stress respond to non-pathogenic bacteria by increases in epithelial paracellular permeability and bacterial translocation. Here we assessed the structural basis of these findings. Confluent filter-grown monolayers of the human colonic T84 epithelial cell line were treated with 0.1 mM dinitrophenol (which uncouples oxidative phosphorylation) and noninvasive, nonpathogenic Escherichia coli (strain HB101, 106 CFU) with or without pretreatment with various pharmacological agents. At 24 h later, apoptosis, tight-junction protein expression, transepithelial resistance (TER, a marker of paracellular permeability), and bacterial internalization and translocation were assessed. Treatment with stabilizers of microtubules (i.e., colchicine), microfilaments (i.e., jasplakinolide) and clathrin-coated pit endocytosis (i.e., phenylarsine oxide) all failed to block DNP+E. coli HB101-induced reductions in TER but effectively prevented bacterial internalization and translocation. Neither the TER defect nor the enhanced bacterial translocations were a consequence of increased apoptosis. These data show that epithelial paracellular and transcellular (i.e., bacterial internalization) permeation pathways are controlled by different mechanisms. Thus, epithelia under metabolic stress increase their endocytotic activity that can result in a microtubule-, microfilament-dependent internalization and transcytosis of bacteria. We speculate that similar events in vivo would allow excess unprocessed antigen and bacteria into the mucosa and could evoke an inflammatory response by, for example, the activation of resident or recruited immune cells. Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Place, publisher, year, edition, pages
2006. Vol. 74, no 1, 192-201 p.
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-36101DOI: 10.1128/IAI.74.1.192-201.2006Local ID: 29888OAI: diva2:256949
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2011-01-11

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Söderholm, Johan D
By organisation
Faculty of Health SciencesDivision of surgeryDepartment of Surgery in Östergötland
In the same journal
Infection and Immunity
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 12 hits
ReferencesLink to record
Permanent link

Direct link