liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces
Linköping University, The Institute of Technology. Linköping University, Department of Mathematics, Applied Mathematics.ORCID iD: 0000-0002-1238-6751
Department of Mathematical Sciences University of Cincinnnati.
2007 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 332, no 1, 190-208 p.Article in journal (Refereed) Published
Abstract [en]

In the setting of metric measure spaces equipped with a doubling measure supporting a weak p-Poincaré inequality with 1 ≤ p < ∞, we show that any uniform domain Ω is an extension domain for the Newtonian space N1, p (Ω) and that Ω, together with the metric and the measure inherited from X, supports a weak p-Poincaré inequality. For p > 1, we obtain a near characterization of N1, p-extension domains with local estimates for the extension operator. © 2006 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
2007. Vol. 332, no 1, 190-208 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-36130DOI: 10.1016/j.jmaa.2006.09.064Local ID: 30029OAI: oai:DiVA.org:liu-36130DiVA: diva2:256978
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Björn, Jana

Search in DiVA

By author/editor
Björn, Jana
By organisation
The Institute of TechnologyApplied Mathematics
In the same journal
Journal of Mathematical Analysis and Applications
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 318 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf