liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Superior material properties of AlN on vicinal 4H-SiC
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.ORCID iD: 0000-0001-9140-6724
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.ORCID iD: 0000-0002-2837-3656
Show others and affiliations
2006 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 100, no 3Article in journal (Refereed) Published
Abstract [en]

The crystal structure and optical properties of thick (>100 nm) AlN layers grown by hot-wall metalorganic chemical vapor deposition are characterized by infrared spectroscopic ellipsometry, cathodoluminescence, and transmission electron microscopy. The choice of substrates among the available SiC wafer polytype modifications (4H/6H) and misorientations (on-/off-axis cut) is found to determine the AlN defect interaction, stress homogeneity, and luminescence. The growth of thick AlN layers benefits by performing the epitaxy on off-axis substrates because, due to stacking faults, the propagation of threading defects in AlN layers is stopped in a narrow interface region. © 2006 American Institute of Physics.

Place, publisher, year, edition, pages
2006. Vol. 100, no 3
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-36477DOI: 10.1063/1.2219380Local ID: 31427OAI: oai:DiVA.org:liu-36477DiVA: diva2:257325
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kakanakova-Georgieva, AneliaPersson, PerHultman, LarsJanzén, Erik

Search in DiVA

By author/editor
Kakanakova-Georgieva, AneliaPersson, PerHultman, LarsJanzén, Erik
By organisation
The Institute of TechnologySemiconductor MaterialsThin Film Physics
In the same journal
Journal of Applied Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 163 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf