liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Age and gender do not influence the ability to detect respiration by photoplethysmography
Linköping University, Department of Medical and Health Sciences, Anesthesiology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Medical and Health Sciences, Anesthesiology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Health Sciences.
Show others and affiliations
2006 (English)In: Journal of clinical monitoring and computing, ISSN 1387-1307, E-ISSN 1573-2614, Vol. 20, no 6, 431-436 p.Article in journal (Refereed) Published
Abstract [en]

Objective  The non-invasive technique photopl- ethysmography (PPG) can detect changes in blood volume and perfusion in a tissue. Respiration causes variations in the peripheral circulation, making it possible to monitor breaths using an optical sensor attached to the skin. The respiratory-synchronous part of the PPG signal (PPGr) has been used to monitor respiration during anaesthesia, and in postoperative and neonatal care. Studies addressing possible differences in PPGr signal characteristics depending on gender or age are lacking.

Methods  We studied three groups of 16 healthy subjects each during normal breathing; young males, old males and young females, and calculated the concordance between PPGr, derived from a reflection mode PPG sensor on the forearm, and a reference CO2 signal. The concordance was quantified by using a squared coherence analysis. Time delay between the two signals was calculated. In this process, we compared three different methods for calculating time delay.

Results  Coherence values ≥0.92 were seen for all three groups without any significant differences depending on age or gender (p = 0.67). Comparison between the three different methods for calculating time delay showed a correlation r = 0.93.

Conclusions  These results demonstrate clinically important information implying the possibility to register qualitative PPGr signals for respiration monitoring, regardless of age and gender.

Place, publisher, year, edition, pages
2006. Vol. 20, no 6, 431-436 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-37154DOI: 10.1007/s10877-006-9050-zLocal ID: 33808OAI: oai:DiVA.org:liu-37154DiVA: diva2:258003
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Respiratory monitoring using reflection mode photoplethysmography: clinical and physiological aspects
Open this publication in new window or tab >>Respiratory monitoring using reflection mode photoplethysmography: clinical and physiological aspects
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Photoplethysmography (PPG) is a non-invasive optical technique for monitoring variations in blood volume and blood flow in skin and other tissues. Light from a light-emitting diode is absorbed, scattered and reflected from the skin, and detected by a photodetector as a plethysmogram. The plethysmogram contains variations of different frequencies. The most clinically utilised is the pulse synchronous variation in the PPG application pulse oximetry, but there is also a respiratory rate synchronous variation (PPGt).

The aims of this work were to evaluate PPG as a clinical method for detection of breaths during anaesthesia, postoperative and intensive care, and to investigate possible circulatory factors in the physiological background of the respiratory synchronous part of the reflection mode PPG signal.

It was concluded that respiratory variations in reflection mode PPG derived from the forearm could be detected with high sensitivity and specificity. PPG, was not significantly affected by awake or anaesthetised state, though indirect signs of reduced sympathetic tone in the anaesthetic state were present, or by spontaneous or positive pressure ventilation. There were no significant differences between men and women or between young and old subjects. Circulatory pressure variations in phase with respiration were present on both the arterial and venous side and they showed the same degree of variation, as did PPG when provoking respiration. Squared coherence, cross-correlation and visual techniques for evaluating time differences were equally good.

Respiratory monitoring in the clinical setting is challenging and no golden standard exists. Methods based on airflow are mostly considered advantageous in detecting apnoea, but are less well tolerated by patients. The results indicate that PPG has a potential as a tool for monitoring respiratory rate. It is non-invasive, well tolerated and can be used for continuous monitoring.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet, 2005. 70 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 898
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-31535 (URN)17335 (Local ID)91-8529-905-7 (ISBN)17335 (Archive number)17335 (OAI)
Public defence
2005-05-26, Elsa Brändström-salen, Universitetssjukhuset, Linköping, 12:00 (Swedish)
Opponent
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2012-09-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Nilsson, LenaGoscinski, TomasJohansson, AndersLindberg, Lars-GöranKalman, Sigga

Search in DiVA

By author/editor
Nilsson, LenaGoscinski, TomasJohansson, AndersLindberg, Lars-GöranKalman, Sigga
By organisation
AnesthesiologyFaculty of Health SciencesDepartment of Biomedical Engineering
In the same journal
Journal of clinical monitoring and computing
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 387 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf