liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Testing spatial independence using a separable covariance matrix
Linköping University, Department of Mathematics, Mathematical Statistics . Linköping University, The Institute of Technology.ORCID iD: 0000-0001-9896-4438
2007 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

Spatio-temporal processes like multivariate time series and stochastic processes occur in many applications, for example the observations from functional magnetic resonance imaging (fMRl) or positron emission tomography (PET). It is interesting to test independence between k sets of the variables, that is testing spatial independence.

This thesis deals with the problem of testing spatial independence for dependent observations. The sample observation matrix is assumed to follow a matrix normal distribution with a separable covariance matrix, in other words it can be written as a Kronecker product of two positive definite matrices. Instead of having a sample observation matrix with independent columns, a covariance between the columns is considered and this covariance matrix is interpreted as a temporal covariance. The main results in this thesis are the computations of the maximum likelihood estimates and the null distribution of the likelihood ratio statistic. Two cases are considered, when the temporal covariance is known and when it is unknown. When the temporal covariance is known, the maximum likelihood estimates are computed and the asymptotic null distribution is shown to be similar to the independent observation case. In the case when the temporal covariance is unknown the maximum likelihood estimates of the parameters are found by an iterative alternating algorithm.

A well known fact is that when testing hypotheses for covariance matrices, distributions of quadratic forms arise. A generalization of the distribution of the multivariate quadratic form X AX', where X is a (p x n) normally distributed matrix and A is a (n x n) symmetric real matrix, is presented. It is shown that the distribution of the quadratic form is the same as the distribution of a weighted sum of noncentral Wishart distributed matrices.

Place, publisher, year, edition, pages
Linköping: Linköpings universitet , 2007. , 66 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1299
National Category
URN: urn:nbn:se:liu:diva-37721Local ID: 37905ISBN: 978-91-85715-79-4OAI: diva2:258570
2007-02-21, Glashuset, Hus B, Linköpings universitet, Linköping, 15:15 (Swedish)
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2014-09-29

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Ohlson, Martin
By organisation
Mathematical Statistics The Institute of Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 391 hits
ReferencesLink to record
Permanent link

Direct link