liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Epigenetic reprogramming of nonreplicating somatic cells for long-term proliferation by temporary cell-cell contact
Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of clinical chemistry.
Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of clinical chemistry.
2007 (English)In: Stem Cells and Development, ISSN 1547-3287, Vol. 16, no 2, 253-268 p.Article in journal (Refereed) Published
Abstract [en]

Embryonic stem (ES) cells are potential sources of tissue regeneration, however, transplanted ES cells produce tumors in the host tissues. In addition, transplantation between genetically unrelated individuals often results in graft rejection. Although the development of patient specific stem cell lines by somatic cell nuclear transfer (SCNT) represents a means of overcoming the problem of rejection, its human application has ethical dilemmas. Adult stem (AS) cells can also differentiate into specialized cells and may provide an alternative source of cells for human applications. In common with other somatic cells, AS cells have limited capacity for proliferation and cannot be produced in large quantities without genetic manipulation. We demonstrate here that nonreplicating mammalian cells can be reprogrammed for long-term proliferation by temporary cell-cell contact through co-culture of AS cells with the GM05267-derived F7 mouse cell line. Subsequent elimination of F7 cells from the co-culture allows proliferation of previously nonreplicating cells, colonies of which can be isolated to produce cell lines. We also demonstrate that the epigenetically reprogrammed AS cells, without the physical transfer of either nuclear or cytoplasmic material from other cells, are capable of long-term proliferation and able to relay signals to other nonreplicating cells to reinitiate proliferation with no addition of recombinant factors. The reported cell amplification procedure is methodologically simple and can be easily reproduced. This procedure allows the production of an unlimited number of cells from a limited number of AS cells, making them an ideal source of cells for applications involving autologous cell transplantation. © Mary Ann Liebert, Inc.

Place, publisher, year, edition, pages
2007. Vol. 16, no 2, 253-268 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-39549DOI: 10.1089/scd.2006.0094Local ID: 49705OAI: oai:DiVA.org:liu-39549DiVA: diva2:260398
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2011-01-11

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Islam, QuamrulIslam, Khaleda

Search in DiVA

By author/editor
Islam, QuamrulIslam, Khaleda
By organisation
Faculty of Health SciencesDivision of clinical chemistry
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf