liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cell cycle effect on the activity of deoxynucleoside analogue metabolising enzymes
Linköping University, Department of Medicine and Health Sciences, Clinical Pharmacology . Linköping University, Faculty of Health Sciences.
Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Pharmacology.
Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Clinical Pharmacology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pharmacology.
2007 (English)In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 357, no 4, 847-853 p.Article in journal (Refereed) Published
Abstract [en]

Deoxynucleoside analogues (dNAs) are cytotoxic towards both replicating and indolent malignancies. The impact of fluctuations in the metabolism of dNAs in relation to cell cycle could have strong implications regarding the activity of dNAs. Deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) are important enzymes for phosphorylation/activation of dNAs. These drugs can be dephosphorylated/deactivated by 5′-nucleotidases (5′-NTs) and elevated activities of 5′-NTs and decreased dCK and/or dGK activities represent resistance mechanisms towards dNAs. The activities of dCK, dGK, and three 5′-NTs were investigated in four human leukemic cell lines in relationship to cell cycle progression and cytotoxicity of dNAs. Synchronization of cell cultures to arrest in G0/G1 by serum-deprivation was performed followed by serum-supplementation for cell cycle progression. The activities of dCK and dGK increased up to 3-fold in CEM, HL60, and MOLT-4 cells as they started to proliferate, while the activity of cytosolic nucleotidase I was reduced in proliferating cells. CEM, HL60, and MOLT-4 cells were also more sensitive to cladribine, cytarabine, 9-β-d-arabinofuranosylguanine and clofarabine than K562 cells which demonstrated lower levels and less alteration of these enzymes and were least susceptible to the cytotoxic effects of most dNAs. The results suggest that, in the cell lines studied, the proliferation process is associated with a general shift in the direction of activation of dNAs by inducing activities of dCK/dGK and reducing the activity of cN-I which is favourable for the cytotoxic effects of cladribine, cytarabine and, 9-β-d-arabinofuranosylguanine. These results emphasize the importance of cellular proliferation and dNA metabolism by both phosphorylation and dephosphorylation for susceptibility to dNAs. It underscores the need to understand the mechanisms of action and resistance to dNAs in order to increase efficacy of dNAs treatment by new rational. © 2007 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
2007. Vol. 357, no 4, 847-853 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-40745DOI: 10.1016/j.bbrc.2007.03.176Local ID: 54026OAI: oai:DiVA.org:liu-40745DiVA: diva2:261594
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Fyrberg, AnnaAlbertioni, FreidounLotfi, Kourosh

Search in DiVA

By author/editor
Fyrberg, AnnaAlbertioni, FreidounLotfi, Kourosh
By organisation
Clinical Pharmacology Faculty of Health SciencesClinical PharmacologyDepartment of Clinical Pharmacology
In the same journal
Biochemical and Biophysical Research Communications - BBRC
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf