liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Electronic Structure of the UD-4 defect in 4H, 6H and 15R SiC
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials.ORCID iD: 0000-0001-5768-0244
Show others and affiliations
2009 (English)In: Materials Science Forum, Vols. 600-603, Trans Tech Publications , 2009, p. 397-400Conference paper, Published paper (Refereed)
Abstract [en]

The photoluminescence (PL) of the UD-4 defect is observed in semi-insulating bulk 4H, 6H and 15R SiC. In 4H and 6H SiC the UD-4 defect consists of two families of no-phonon (NP) lines, Ua and Ub, and in 15R SiC it consists of three families, Ua, Ub and U15R. The Ua family in 4H, 6H and 15R all show similar temperature behavior with higher energy NP lines becomming observable at higher temperatures. In the case of the Ub and U15R families, a luminescence line with lower energy than the prominent luminescence line appears at higher temperatures. The polarization and Zeeman measurements suggest that the defect has C3v symmetry.

Place, publisher, year, edition, pages
Trans Tech Publications , 2009. p. 397-400
Series
Materials Science Forum, ISSN 1662-9752 ; 600-603
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-41968DOI: 10.4028/www.scientific.net/MSF.600-603.397Local ID: 59428OAI: oai:DiVA.org:liu-41968DiVA, id: diva2:262823
Conference
ICSCRM 2007, Otsu, Japan October 14-19, 2007
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2015-05-19
In thesis
1. Optical Characterization of Deep Level Defects in SiC
Open this publication in new window or tab >>Optical Characterization of Deep Level Defects in SiC
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Silicon Carbide (SiC) has long been considered a promising semiconductor material for high power devices, and has also recently found to be one of the emergent materials for quantum computing. Important for these applications are both the quality and purity of the crystal. In order to be able to engineer components (be it power devices or components for quantum computing), it is necessary to study and understand the behavior of various defects in the crystal.

Deep level defects can greatly influence the semiconducting properties, since they can act as recombination centers by interacting with both holes from the valence band and electrons from the conduction band. Because of this, they may be used to control the charge carrier life time. Besides influencing the electric properties of the materials, deep level defects are also of interest in the field of quantum computing. In this application, the deep level defects can be used as basic units for quantum information – so called qubits.

Deep level defects may also be classified based on their origin, i.e. impurity or intrinsic. An impurity consists of one or more foreign atoms, which means neither carbon nor silicon in the case of SiC. Impurities can be incorporated in the crystal during growth, or through implantation or diffusion. A defect is intrinsic when it does not involve foreign atoms, but instead imperfections in the perfect crystal structure, for example a vacancy, an anti-site or a combinations of these. Intrinsic defects can be created during growth or artificially, using for example electron irradiation.

This thesis is focused on characterization of several deep level defects in SiC using different optical techniques. The optical transitions investigated are in the near-infrared region.

Paper 1 focuses on the possibility to control the concentration of intrinsic defects through the cooling down procedure after high temperature annealing. The temperature of 2300°C is close to the bulk crystal growth temperature. It is shown that it is possible to control the concentration of the silicon vacancy (VSi) and UD-2 (later identified as the divacancy (VCVSi)) by the cooling  sequence. Both these defects have later been shown to be promising candidates as qubits and single photon emitters.

Paper 2 gives insight into the electronic structure of the unidentified deep level defect UD-4, which is believed to be of intrinsic origin. The defect is investigated in the polytypes 4H-, 6H-, and 15R-SiC, and the number of optical centers associated with UD-4 follows neither the number of inequivalent sites nor the possible configurations for pair-defects. There are two optical centers in 4H- and 6H-SiC, and three optical centers in 15R-SiC.

Paper 3 investigates several transition metals incorporated in SiC and the formation energies for different possible configurations. This is of importance since several impurity related deep level defects cannot be explained as purely substitutional defects, based on the fact that the number of optical centers does not follow the number of inequivalent sites. This is investigated in detail, and explained using an asymmetric split vacancy (ASV) model. It was found that the formation energy for some transition metals in ASV are lower than the transition metal in a substitutional configuration. Further on, it was shown that the formation energies for transition metals in ASV configurations depend strongly on what kinds of inequivalent sites the ASV can be described by and the lowest formation energy that is found for transition metals in ASV occupying two hexagonal sites.

In paper 4, the optical identification and electronic configuration of the commonly observed deep level defect tungsten (formerly known as UD-1) are reported. The electronic levels involved in the optical transitions of tungsten are deduced and described using group theory techniques.

Paper 5 shows that the above mentioned ASV model can be used to describe the properties of niobium in SiC. In the paper, the optical identification and properties are analyzed and investigated experimentally using photoluminescence, photoluminescence excitation spectroscopy and Zeeman spectroscopy.

In paper 6 the identification of molybdenum (formerly known as I-1) is reported including its electronic configuration. Molybdenum can be well described using the ASV model, and in this paper its local vibrational modes are also investigated in detail. It is shown that using the polarization dependence of local vibration replicas and a simplified defect molecule model, the estimated position of Mo in the ASV is in agreement with the theoretically predicted position reported in paper 3. The usefulness for molybdenum in SiC as a qubit is also investigated.

In paper 7, two different intrinsic nearest pair-neighbor defects are reported: UD-2 (VCVSi) and UD-0 (tentatively assigned as the VCCSi). Their optical properties are analyzed together with their creation and annihilation properties.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. p. 42
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1674
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-117978 (URN)978-91-7519-059-4 (ISBN)
Public defence
2015-06-03, Nobel (BL32), Fysikhuset, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2015-05-19 Created: 2015-05-19 Last updated: 2015-05-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Gällström, AndreasMagnusson, BjörnHenry, AnnePaskov, PlamenJanzén, Erik

Search in DiVA

By author/editor
Gällström, AndreasMagnusson, BjörnHenry, AnnePaskov, PlamenJanzén, Erik
By organisation
Semiconductor MaterialsThe Institute of TechnologyDepartment of Physics, Chemistry and Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 225 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf