liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Dielectric properties of Ti2AlC and Ti2AlN MAX phases: The conductivity anisotropy
Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics.ORCID iD: 0000-0002-2837-3656
Show others and affiliations
2008 (English)In: Journal of Applied Physics, ISSN 0021-8979, Vol. 104, no 2Article in journal (Refereed) Published
Abstract [en]

The optical properties of Ti2AlN and Ti2AlC were determined in the 2-80 eV energy range by electron energy loss spectroscopy and in the visible-ultraviolet range, from 1.6 to 5.5 eV, by spectroscopic ellipsometry. Both experimental techniques are angular resolved and in very good agreement over their overlapping energy range. We observe a dependence of the dielectric function as a function of the crystallographic orientation of the crystals. In particular, we notice a shift of the energy position of the plasmon absorption of Ti2AlC with respect to Ti2AlN. Moreover, a drastic change is also observed in the shape of the dielectric function as a function of the composition (or valence electron concentration). The dielectric functions are fitted to an empirical semiclassic Drude-Lorentz model to obtain physical parameters such as the relaxation times. These microscopic parameters are then used in a macroscopic model to yield the transport properties such as the static conductivity as function of the crystal orientation. Ti 2AlN is found to be a better conductor than Ti2AlC in all orientations, which is consistent with experimental measurements. A comparison of the electrical and optical properties of these two compounds is made in terms of different electronic properties and interband-intraband transitions deduced from our model. © 2008 American Institute of Physics.

Place, publisher, year, edition, pages
2008. Vol. 104, no 2
National Category
Natural Sciences
URN: urn:nbn:se:liu:diva-42705DOI: 10.1063/1.2960340Local ID: 68322OAI: diva2:263562
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2016-08-31

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Hultman, Lars
By organisation
The Institute of TechnologyThin Film Physics
In the same journal
Journal of Applied Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 33 hits
ReferencesLink to record
Permanent link

Direct link