liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Boundedness of the hessian of a biharmonic function in a convex domain
Department of Mathematics Perdue University.
Linköping University, The Institute of Technology. Linköping University, Department of Mathematics, Applied Mathematics.
2008 (English)In: Communications in Partial Differential Equations, ISSN 0360-5302, E-ISSN 1532-4133, Vol. 33, no 8, p. 1439-1454Article in journal (Refereed) Published
Abstract [en]

We consider the Dirichlet problem for the biharmonic equation on an arbitrary convex domain and prove that the second derivatives of the variational solution are bounded in all dimensions. Copyright © Taylor & Francis Group, LLC.

Place, publisher, year, edition, pages
2008. Vol. 33, no 8, p. 1439-1454
National Category
Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-43168DOI: 10.1080/03605300801891919Local ID: 72251OAI: oai:DiVA.org:liu-43168DiVA, id: diva2:264027
Available from: 2009-10-10 Created: 2009-10-10 Last updated: 2017-12-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Maz´ya, Vladimir

Search in DiVA

By author/editor
Maz´ya, Vladimir
By organisation
The Institute of TechnologyApplied Mathematics
In the same journal
Communications in Partial Differential Equations
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 289 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf